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Chapter 1

Introduction

1.1 Motivation
This work is the sequel of a precedent Master thesis on the paper [3] of R. E. Bank and
A. Weiser. This paper deals with three new a posteriori error estimators for elliptic partial
differential equations which are equivalent to the error (in the norm of the energy) under a
binding assumption called saturation assumption.

The first aim of the second chapter is to describe this assumption and precise why it is a
demanding assumption. The second one is to say few words about examples of problems for
which this assumption is not satisfied.

In the third chapter we will work on the third a posteriori error estimator from [3], here-
after called BW error estimator. The aim is to prove that this estimator is equivalent to
the error whithout using the saturation assumption. In order to do this, we will prove the
equivalence between the residual a posteriori error estimator and BW error estimator in the
norm of the energy and without the saturation assumption, firstly for piecewise linear fi-
nite elements and hopefully for finite elements of higher order. This equivalence result for
piecewise linear finite elements has been already proved in a different way in [10] of R. H.
Nochetto. So we hope that we could generalize it to finite elements of arbitrary order.

I want to warmly thank my directors Franz Chouly and Alexei Lozinski for their help in
the redaction of this Master thesis, in the developement of the proof and more generally in
my entire second year of Master.
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1.2 Preliminary definitions
Our study will take place on a bounded open polygon of R2, denoted by Ω and of nonempty
interior.

First of all, we give general definitions about Sobolev spaces. We give also the Trace
theorem and the Poincaré’s inequality. The definitions of Sobolev spaces can be find in [1],
the Trace theorem in [9] and the Poincaré’s inequality in [5].

For ω a nonempty interior open subset of RN with N a positive integer and m a non
negative integer, the Sobolev space Hmpωq is defined by :

Hm
pωq :“

 

v P L2
pωq such that, @α P NN , |α| ď m, Bαv P L2

pωq
(

,

where Bαv is the αth partial derivative of v in the sense of distributions.

For each m, the space Hmpωq is a Hilbert space for the following inner product, defined for
ϕ and χ in Hmpωq by :

pϕ, χqm,ω :“
ÿ

αPNN

|α|ďm

pB
αϕ, Bαχqω ,

of associated norm :

||ϕ||m,ω :“

¨

˚

˚

˝

ÿ

αPNN

|α|ďm

||B
αϕ||2ω

˛

‹

‹

‚

1
2

.

We will also need the fractional Sobolev spaces. For 0 ă s ă 1, the so-called Sobolev
space with fractional exponent or fractional Sobolev space is defined as,

Hs
pωq “

#

v P L2
pωq such that,

vpxq ´ vpyq

||x´ y||s`N{2
P L2

pω ˆ ωq

+

.

Furthermore, when s ą 1 is not integer, letting σ “ s ´ rss where rss is the integer part
of s, Hspωq is defined as,

Hs
pωq “ tv P H rss

pωq such that, Bαv P Hσ
pωq, @α, |α| “ rssu.

Let us also recall the usefull trace theorem,

Theorem 1 (Trace theorem, [9] Chap.B.3.5). Let Ω be a bounded open set and BΩ its polygo-
nal boundary. Let γ0 : C0pΩq ÝÑ C0pBΩq map functions in C0pΩq to their trace on BΩ. Then,
we can continuously extend to H1pΩq the application γ0 in an application, again denoted γ0,
such that γ0 : H1pΩq ÝÑ H1{2pBΩq, and,

‚ γ0 is surjective.

‚ The kernel of γ0 is denoted H1
0 pΩq.
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The space H1
0 pωq is a Hilbert space for the inner product of H1pωq but also for the inner

product p∇¨,∇¨qω according to the following Proposition :

Proposition 1 (Poincaré’s inequality, see [5] Chap. 9.4). If ω is a bounded open set of Rn

then there exists a constant C only depending on ω such that for all v in H1
0 pωq :

||v||ω ď C||∇v||ω.

In particular, the application pu, vq ÞÝÑ
ż

ω

∇u ¨∇v is a scalar product on H1
0 pωq that induces

the norm ||∇ ¨ ||ω which is equivalent to the norm || ¨ ||H1pωq.

A straightforward consequence of the Poincaré’s inequality is that the bilinear form

pu, vq ÞÝÑ

ż

ω

∇u ¨∇v is continuous and coercive on H1
0 pωq provided with the norm || ¨ ||H1pωq,

in other terms there exists a constant C only depending on ω such that for all v in H1
0 pωq :

ż

ω

p∇vq2 ě C||v||2H1pωq. (1.1)

1.3 Poisson problem
For the sake of simplicity, we will treat a less general problem than in [10] and only consider
the Poisson problem with homogeneous Dirichlet boundary condition on a two-dimensional
domain. Hopefully it could be possible to extend the following results to more general cases,
like elliptic problems with Neumann boundary condition or mixed Dirichlet-Neumann bound-
ary conditions and for instance to linear elasticity problems.

Let f be a function which belongs to L2pΩq and consider the following problem :

Problem 1. Find u : Ω ÝÑ R such that :
#

´∆u “ f in Ω,

u “ 0 on BΩ,

The weak form of this problem is given by

Problem 2 (Weak form). Find a function u which belongs to H1
0 pΩq such that for all v in

H1
0 pΩq :

ż

Ω

∇u ¨∇v “

ż

Ω

fv.

Note : Since pu, vq ÞÝÑ
ż

Ω

∇u ¨∇v is a inner product on H1
0 pΩq and since v ÞÝÑ

ż

Ω

fv is a

continuous linear form, then according to the Lax-Milgram theorem (see [5] Chap. 5.3) the
Problem 2 has an unique solution in H1

0 pΩq denoted by u.
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1.4 Discretization
Let tThuh be a family of triangulations of Ω indexed by a nonnegative real constant h called
the size of Th and defined as :

h “ max
TPTh

hT ,

where, for any T in Th the real hT is the longest edge of the triangle T .

We will suppose that the family tThuh is shape regular, in other terms it exists a nonneg-
ative real constant δ0 such that for all Th in tThuh and for all T in Th, if we denote by ρT the
radius of the inscribed circle of T , we have :

ρT ě δ0hT .

Henceforth we will consider Th a triangulation of tThuh. We will also denote by Eh the
collection of edges of the mesh Th and EIh the collection of interior edges of Th, in other words
the edges of Eh which are not in BΩ. Let us denoted by Nh the set of all the nodes of Th and
its subset N I

h of interior nodes.

Let us denote by ηx the set of all the neighbouring triangles of the node x, also called
patch of x or star of x. More precisely :

ηx :“
ď

T 1PTh
T 1

Ş

x‰∅

T 1.

For S which can be a triangle or an edge, we denotes by measpSq the 2 dimensional
Lebesgue measure of S if S is a triangle and 1 dimensional Lebesgue measure if S is an edge.

Using the shape regularity of the mesh we can show that for any node x of the mesh, the
number of triangles in ηx is estimated by :

C0 ď cardpηxq ď C 10. (1.2)

with C0 “
2π

π´arcsinpδ0q
and C 10 “

2π
arcsinpδ0q

.
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Proof. Let x be a node of the mesh. To bound the number of triangles in ηx we need to
bound the angles of these triangles corresponding to the vertice x,

In order to do this we will use the following formula, for a triangle T if we denotes perimpT q
its perimeter and since its area is given by measpT q we have

ρT “
2 measpT q

perimpT q
. (1.3)

In fact, let us split our triangle T into three triangles T1, T2 and T3 and denotes the corre-
sponding edge of T , a1, a2 and a3 as follow

We have

measpT q “
3
ÿ

i“1

measpTiq,

and for each i P t1, 2, 3u,

measpTiq “
ai ˆ ρT

2
.
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So,

measpT q “
3
ÿ

i“1

ai ˆ ρT
2

“
ρT
2

3
ÿ

i“1

ai “
perimpT q ˆ ρT

2
.

We get (1.3).

Now, for a triangle T of ηx if we denotes u and v the two vectors corresponding to the edges
of T touching x, as follow

we have the following formula for the area of T ,

measpT q “
||u|| ˆ ||v|| ˆ sinpθq

2
,

where ||u|| is the Euclidian norm of u. Then if we use this in (1.3) we get,

ρT “
||u|| ˆ ||v|| ˆ sinpθq

perimpT q

ď
h2
T ˆ sinpθq

hT

ď hT sinpθq.

Then since,

sinpθq ě
ρ

hT
ě δ0,

it implies that θ Ps0;πr and,

arcsinpδ0q ď θ ď π ´ arcsinpδ0q.

Now if we number θi for i P t1, ¨ ¨ ¨ , cardpηxqu each interior angle corresponding to a triangle
of ηx we get,

7



cardpηxq
ÿ

i“1

arcsinpδ0q ď

cardpηxq
ÿ

i“1

θi ď

cardpηxq
ÿ

i“1

π ´ arcsinpδ0q,

cardpηxq ˆ arcsinpδ0q ď
2π

cardpηxq
ď π ´ arcsinpδ0q,

arcsinpδ0q

2π
ď

1

cardpηxq
ď
π ´ arcsinpδ0q

2π
,

2π

π ´ arcsinpδ0q
ď cardpηxq ď

2π

arcsinpδ0q
.

Another consequence of the shape regularity is the local quasi-uniformity of the mesh
more precisely there exists a constant δ1 ě 1 only depending on δ0 such that for all node x
in Nh and all triangle T in ηx :

hx ď δ1hT , (1.4)

where hx “ max
TPηx

phT q.

We also need to introduce the scaling application, denoted by ST where T is a triangle of
the mesh and defined in the following proposition :

Proposition 2 ([9], Chap. 1.3.2). Let rT be the reference triangle in R2 of vertices
tp0, 0q, p1, 0q, p0, 1qu and T a triangle of the mesh Th. Then there exist an affine bijection ST
mapping rT on T such that :

ST : rT ÝÑ T
rx ÞÝÑ x “ JT rx` bT ,

where JT is a real invertible matrix 2 ˆ 2 which is also the Jacobian matrix of ST and bT is
a vector in R2.

Moreover, we can assume that for a node x of T , the application ST send x on p0, 0q.

In the same way, we define a scaling application for edges. We can set rE the reference
edge as the segment rp0, 0q, p1, 0qs. Then we can define SE as follow,

SE : rE ÝÑ E
rx ÞÝÑ x “ JErx` bE,

where JE is a real invertible matrix 2ˆ 2 which is also the Jacobian matrix of SE and bE is
a vector in R2.
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Using these scaling applications we can set usefull results. In the sequel we will denote
by n the outside normal of Ω and we will use the same notation for the outside normal
of any triangle T of the mesh or for an (arbitrary) normal of an edge E. Only when it is
necessary we will precise the origin of the normal, nE for a normal from the edge E, nT
for the outside normal of a triangle T etc. On another hand, we will denote by s the 2
dimensional variable on T and rs the 2 dimensional variable on rT . We will use the same
notations for the 1 dimensional variables of E and rE. We also denote by ∇s and ∇

rs the

different gradients relative to s and rs respectively. In the same way we will denotes by
B¨

Bn |s

and
B¨

Bn |rs
the respectives normal derivatives.

Proposition 3 ([9], Chap. 1.5.1). With notations of Proposition 2 and if rv is a function
which belongs to H1prT q, let us define the function v on a triangle T such that :

v “ rv ˝ S´1
T .

Then :

1. ChT ||rv|| rT ď ||v||T ď C 1hT ||rv|| rT ,

2. C||∇
rsrv|| rT ď ||∇sv||T ď C 1||∇

rsrv|| rT ,

all the constants only depends on the regularity of the mesh and are independant of h.

Proposition 4. Let rv be a function which belongs to H1p rEq and v defined as follow,

v “ rv ˝ S´1
E .

Then,

1. ||v||E “ h
1{2
E ||rv||

rE ,

2. Ch´1{2
E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Brv

Bn |rs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rE

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bv

Bn |s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

ď C 1h
´1{2
E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Brv

Bn |rs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rE

,

where the constants C and C 1 only depends on the regularity of the mesh and are independant
of h.

Let us now introduce different FE spaces : for k a non negative integer, Vh (resp. V f
h ,

resp. V g
h ) will be the continuous Pk (resp. Pk`1, resp. Pk´1) FE space and V disc

h (resp.
V f,disc
h , resp. V g,disc

h ) their discontinuous counterparts. If k ´ 1 “ 0 we will suppose that V g
h

is the discontinuous P0 FE space, in other terms V g
h “ V g,disc

h . Due to the Dirichlet boundary
condition we also assume that the functions in each FE space vanishes on BΩ.

We can now fix the discrete problem :
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Problem 3 (Discrete problem). Find a function uh which belongs to Vh such that for all vh
in Vh :

ż

Ω

∇uh ¨∇vh “

ż

Ω

fvh. (1.5)

We will denote by e the approximation error, defined by :

e “ u´ uh.

In the same way we can set the counterparts of the discrete problem in the spaces V f
h

and V g
h ,

Problem 4. Find a function ufh which belongs to V f
h such that for all vfh in V f

h :
ż

Ω

∇ufh ¨∇v
f
h “

ż

Ω

fvfh , (1.6)

and,

Problem 5. Find a function ugh which belongs to V g
h such that for all vgh in V g

h :
ż

Ω

∇ugh ¨∇v
g
h “

ż

Ω

fvgh. (1.7)

In the sequel we will denotes by ufh and ugh the respective solutions of these problems.

To define the estimator of Bank and Weiser we need to introduce a Lagrange-based
polynomial interpolation operator I such that :

I : V f,disc
h ÝÑ V g,disc

h ,

and :

1. for all vh P V g,disc
h , Ivh “ vh,

2. for all vh P V f
h , Ivh belongs to V g

h (I preserve continuity),

3. there exists a constant C0 depending on δ0, k (the maximum degree of polynoms in Vh)
and I but independant of h such that :

sup
vhPV

f,disc
h

vh‰0

||∇pIvhq||Ω
||∇vh||Ω

ď C0.
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Let us denoted by V 0
h the kernel of the operator I :

V 0
h “ tvh P V

f,disc
h , Ivh “ 0u.

In order to prove the fiability and efficacity results for the residual estimator, we also need
a quasi-interpolation operator for nonsmooth functions which respect the Dirichlet boundary
condition. We use for this the Bernardi-Girault quasi-interpolation operator which is intro-
duced in [4] and denoted R. For any function v in H1

0 pΩq, its image by the Bernardi-Girault
quasi-interpolant R belongs to Vh.

Now we can set interpolation error results corresponding at each interpolation operator :

Theorem 2 (Lagrange interpolation error, [2], Chap. 1.3.7). Let T be a triangle of Th and s
and t two nonnegative reals with s in r0; 1s. Then there exists a constant CL ą 0 depending
on the regularity of the mesh Th, on s and t and on the interpolant I but which not depend
on h such that for all vh P V f

h pT q we have :

|vh ´ Ipvhq|HspT q ď CLh
t´s
T |vh|HtpT q.

Theorem 3 (Bernardi-Girault interpolation error, [4]). Let T be a triangle of Th and s be a
real in r0; 1s and t satisfy s ď t ď k ` 1 then there exist a constant CR ą 0 depending on the
regularity of the mesh Th, on s and t and on the interpolant R but which is independant of
h such that for all v P H tpT q we have :

|v ´Rpvq|HspT q ď CRh
t´s
T |v|HtpηT q, (1.8)

and,
|v ´Rpvq|HspEq ď CRh

t´s´1{2
E ||v||HtpηEq (1.9)

where E is an edge of the element T .
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Chapter 2

Definitions of estimators

Let E in Eh be an interior edge of the mesh which is shared between two triangles T1 and
T2, we denote by nE an arbitrary normal of E and we name T1 the triangle which nE is its
outward normal. For a function v piecewise continuous on the mesh Th and for an edge E in
Eh, we define the jump of v on E, denoted JvKE by :

JvKE pxq “ v|T2pxq ´ v|T1pxq.

If ϕ is a function in L2pΩq, we define oscpϕq the oscillations of the function ϕ by :

oscpϕq “ inf
ϕhPV

g
h

˜

ÿ

TPTh

h2
T ||ϕ´ ϕh||

2
T

¸1{2

.

2.1 Residual a posteriori error estimator
First of all, let us give a characterization of the error e :

Proposition 5 (Error equation). For all function v in H1
0 pΩq we have :

ż

Ω

∇e ¨∇v “
ÿ

TPTh

FT pvq, (2.1)

where, for all T in Th :

FT pvq :“

ż

T

rv `
1

2

ż

BT

Jhv, (2.2)

with r :“ f `∆uh and Jh :“

s
Buh
Bn

{
.

Proof. Let v be a function of H1
0 pΩq. So by definition of the error e we have :

ż

Ω

∇e ¨∇v “
ż

Ω

∇u ¨∇v ´
ż

Ω

∇uh ¨∇v

“

ż

Ω

fv ´

ż

Ω

∇uh ¨∇v.

(2.3)
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Now we want to apply the Green formula to the second integral but the function uh is not
rather reguliar on Ω : we need at least H2pΩq and uh is only continuous. So we have to split
the integral into a sum of integrals on each triangle T of the mesh, where uh is polynomial
and fairly reguliar. Then :

ż

Ω

∇uh ¨∇v “
ÿ

TPTh

ż

T

∇uh ¨∇v

“
ÿ

TPTh

ˆ

´

ż

T

∆uhv `

ż

BT

Buh
BnT

v

˙

.

So if we replace this in (2.3):
ż

Ω

∇e ¨∇v “
ÿ

TPTh

ˆ
ż

T

pf `∆uhqv ´

ż

BT

Buh
BnT

v

˙

.

However, since v is in H1
0 pΩq the following sum :

ÿ

TPTh

ż

BT

Buh
BnT

v,

is only a sum over the interior edges of the mesh. Moreover, each interior edge E of the mesh
is counted two times. Indeed, let us denote by T1 and T2 the two triangles which share E.
For a function v on Ω we also denote by v1 and v2 the restrictions of v to T1 and T2. With
these notations we have :

ÿ

TPTh

ż

BT

Buh
BnT

v “
ÿ

EPEI
h

ˆ
ż

E

Buh,1
BnT1

v1 `

ż

E

Buh,2
BnT2

v2

˙

.

Since v belongs to H1
0 pΩq, we have that v1 “ v2 on E and if we use that nE “ nT1 “ ´nT2

and the definition of the jump, we obtain :

ÿ

TPTh

ż

BT

Buh
BnT

v “
ÿ

EPEI
h

ż

E

ˆ

Buh,1
BnE

´
Buh,2
BnE

˙

v

“
ÿ

EPEI
h

ż

E

ˆ

´

s
Buh
Bn

{˙
v.

Finally :
ż

Ω

∇e ¨∇v “
ÿ

TPTh

ˆ
ż

T

pf `∆uhqv

˙

`
ÿ

EPEI
h

ˆ
ż

E

s
Buh
Bn

{
v

˙

,

and if we write the last sum as a sum over triangles T we obtain :
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ż

Ω

∇e ¨∇v “
ÿ

TPTh

ˆ
ż

T

pf `∆uhqv `
1

2

ż

BT

s
Buh
Bn

{
v

˙

“
ÿ

TPTh

FT pvq.

Let us now define the residual a posteriori error estimator :

Definition 1 (Residual a posteriori estimator). We define the residual a posteriori error
estimator, denoted by Eres as :

Eres :“

˜

ÿ

TPTh

h2
T ||fh `∆uh||

2
T `

ÿ

EPEh

hE

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s
Buh
Bn

{ˇ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

E

¸1{2

,

where fh P V g
h is an approximation of the data f and

s
Buh
Bn

{
is the jump of the normal

derivative of uh on the edges. From now on we will denotes :

rh :“ fh `∆uh,

the interior residual and called Jh :“

s
Buh
Bn

{
the edges residual.

We can state the a posteriori estimation theorem :

Theorem 4. It exists a positive constant C1,res independant of h such that we have the
following boundary :

||∇e||Ω ď C1,res

`

E2
res ` oscpfq2

˘1{2
.

Proof. As a first step, let us establish the Galerkin orthogonality. By the Problem 2 we have,
for all vh in Vh Ă H1

0 pΩq :
ż

Ω

∇u ¨∇vh “
ż

Ω

fvh,

and by the discrete Problem 3 :
ż

Ω

∇uh ¨∇vh “
ż

Ω

fvh.

If we substract these two lines we obtain the Galerkin orthogonality :
ż

Ω

∇e ¨∇vh “ 0. (2.4)
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Now let v be a function of H1
0 pΩq and Rv the interpolant of v which belongs to Vh. By

(2.4) and by the error equation in Proposition 5 we have :
ż

Ω

∇e ¨∇Rv “
ÿ

TPTh

ż

T

rRv `
ÿ

EPEI
h

ż

E

JhRv “ 0.

So if we substract this line to the error equation we got for all v in H1
0 pΩq :

ż

Ω

∇e ¨∇v “
ÿ

TPTh

ż

T

rpv ´Rvq `
ÿ

EPEI
h

ż

E

Jhpv ´Rvq,

and by Cauchy-Schwarz :
ż

Ω

∇e ¨∇v ď
ÿ

TPTh

||r||T ||v ´Rv||T `
ÿ

EPEI
h

||Jh||E ||v ´Rv||E. (2.5)

By the Theorem 3 there exist a constant C only depending on δ0 (the regularity of the
mesh) such that for all v in H1

0 pΩq :

||v ´Rv||T ď ChT ||v||H1pηT q,

and,

||v ´Rv||E ď Ch
1{2
E ||v||H1pηEq.

If we apply these inequalities and discrete Cauchy-Schwarz to (2.5) we obtain :
ż

Ω

∇e ¨∇v ď
ÿ

TPTh

ChT ||r||T ||v||H1pηT q `
ÿ

EPEI
h

Ch
1{2
E ||Jh||E ||v||H1pηEq

ď C

¨

˝

˜

ÿ

TPTh

||v||2H1pηT q

¸1{2 ˜
ÿ

TPTh

h2
T ||r||

2
T

¸1{2

`

¨

˝

ÿ

EPEI
h

||v||2H1pηEq

˛

‚

1{2 ¨

˝

ÿ

EPEI
h

hE||Jh||
2
E

˛

‚

1{2
˛

‹

‚

.

Let us now establish that there exists two constants C and C 1 only depending on δ0, the
regularity of the mesh, such that :

˜

ÿ

TPTh

||v||2H1pηT q

¸1{2

ď C||v||H1pΩq, (2.6)

and :
¨

˝

ÿ

EPEI
h

||v||2H1pηEq

˛

‚

1{2

ď C 1||v||H1pΩq. (2.7)
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If we detail the left hand side of (2.6) we have :
ÿ

TPTh

||v||2H1pηT q
“

ÿ

TPTh

ÿ

T 1PηT

||v||2H1pT 1q

“
ÿ

T 1PTh

ÿ

T s.t.
T 1PηT

||v||2H1pT 1q

“
ÿ

T 1PTh

#tT P Th s.t. T 1 P ηT u||v||2H1pT 1q

ď C
ÿ

T 1PTh

||v||2H1pT 1q

ď C||v||2H1pΩq,

where C “ max
T 1PTh

p#tT P Th s.t. T 1 P ηT uq. By (1.2) we can show that the constant C is

bounded by another constant which only depends on δ0.

By a similar argument we can set the inequality (2.7).

Then if we use (2.6) and (2.7), the concavity of the function square root and Proposition 1
we get :

ż

Ω

∇e ¨∇v ď C||v||H1pΩq

¨

˚

˝

˜

ÿ

TPTh

h2
T ||r||

2
T

¸1{2

`

¨

˝

ÿ

EPEI
h

hE||Jh||
2
E

˛

‚

1{2
˛

‹

‚

ď C ||∇v||Ω

¨

˝

ÿ

TPTh

h2
T ||r||

2
T `

ÿ

EPEI
h

hE||Jh||
2
E

˛

‚

1{2

.

And now applying the inequality (1.1) and substituting e in place of v give :

||∇e||2Ω ď C||∇e||Ω

¨

˝

ÿ

TPTh

h2
T ||r||

2
T `

ÿ

EPEI
h

hE||Jh||
2
E

˛

‚

1{2

.

Finally dividing by ||∇e||Ω, and using the triangular inequality gives :
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||∇e||Ω ď C

¨

˝

ÿ

TPTh

h2
T ||rh||

2
T `

ÿ

EPEI
h

hE||Jh||
2
E `

ÿ

TPTh

h2
T ||r ´ rh||

2
T

˛

‚

1{2

ď C

¨

˝

ÿ

TPTh

h2
T ||rh||

2
T `

ÿ

EPEI
h

hE||Jh||
2
E `

ÿ

TPTh

h2
T ||r ´ rh||

2
T

˛

‚

1{2

Now notice that r ´ rh “ f ´ fh and when we take fh such that :
ÿ

TPTh

h2
T ||r ´ rh||

2
T “ oscpfq2,

we finally have :
||∇e||Ω ď C

`

E2
res ` oscpfq2

˘1{2
.

Now let us define the bubble functions and set some usefull results in order to prove the
efficiency of residual estimator.

Definition 2 (Bubble function, [2] Chap. 2.3.1). Let S be an element of the mesh Th which
can be a triangle, a node or an edge. We call bubble function associated to S and denoted bS
a function such that :

‚ bS P PlpqSq with l “ 3 if S is a triangle and l “ 2 if S is an edge,

‚ bS “ 0 on B qS,

‚ bS ą 0 in
˝

qS,

‚ bS “ Op1q in qS,

where qS “ S if S is a triangle and qS “ T1

Ť

T2 if S is an edge (T1 and T2 are the two
triangles sharing E). We extend bS to all Ω by setting bS ” 0 on ΩzqS.

Proposition 6 ([2] Chap. 2.3.1). Let T be a triangle of Th and bT the bubble function
associated. Then there exists a constant C independant of hT such that for all vh in VhpT q :

C´1
||vh||

2
T ď

ż

T

v2
hbT ď C||vh||

2
T , (2.8)

and,
C´1

||vh||T ď ||vhbT ||T ` hT ||∇pvhbT q||T ď C||vh||T . (2.9)
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Proof. The proof consist in applying the norm equivalence in finite dimension on a reference
triangle rT fixed once for all and such that hT “ 1. Finally we prove the inequalities on each
triangle T by using an application of scaling.

Let us now set the same theorem but for the edges of the mesh.

Proposition 7 ([2] Chap. 2.3.1). Let E be an edge of the mesh and bE the corresponding
edge bubble function. Then there exists a constant C independant of hE such that for all
function vh of VhpEq :

C´1
||vh||

2
E ď

ż

E

v2
hbE ď C||vh||

2
E (2.10)

and,
h
´1{2
qE
||vhbE|| qE ` h

1{2
qE
||∇pvhbEq|| qE ď C||vh||E, (2.11)

where qE “ T1

Ť

T2, T1 and T2 are the two triangles such that T1

Ş

T2 “ E.

Proof. The proof is similar to the one for the triangles.

Theorem 5 (Efficiency of residual estimator). There exists a constant C and C 1 only de-
pending on the regularity of the mesh such that, for any triangle T of the mesh, we have
:

hT ||rh||T ď C
`

||e||H1pT q ` hT ||f ´ fh||T
˘

, (2.12)

and for any interior edge E of the mesh,

h
1{2
qE
||Jh||E ď C 1

´

||e||H1p qEq ` ||f ´ fh|| qE

¯

, (2.13)

where qE “ T1 Y T2, T1 and T2 are the two triangles such that T1 X T2 “ E and
h

qE “ max
TP qE

phT q.

These two inequalities implies the existence of C2,res only depending on the regularity of the
mesh such that,

Eres ď C2,res
`

||∇e||2Ω ` osc2
pfq

˘1{2
. (2.14)

Proof. We will use the Verfürth’s bubble functions to prove (2.12) and (2.13).

1. Let us start with (2.12). Let T be a triangle of Th and bT be the bubble function
associated. Moreover, we consider fh an approximation of f in the FE space V g

h and
denote rh :“ fh `∆uh. With these definitions we have that rh belongs to Vh, and by
the Proposition 6 there exists a constant C independant of hT and rh such that :

||rh||
2
T ď C

ż

T

r2
hbT . (2.15)
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Let us now apply the error equation (2.1) with vh “ rhbT P V . Since rhbT vanishes on
BT we have :

ż

T

∇e ¨∇prhbT q “
ż

T

rrhbT

“

ż

T

rrhbT `

ż

T

r2
hbT ´

ż

T

r2
hbT .

Then :
ż

T

r2
hbT “

ż

T

∇e ¨∇prhbT q `
ż

T

rhbT prh ´ rq. (2.16)

With Cauchy-Schwarz and the inequality (2.9) of Proposition 6 on the first integral in
the right hand side :

ż

T

∇e ¨∇prhbT q ď ||∇e||T ||∇prhbT q||T

ď ||∇e||T ||rhbT ||H1pT q

ď Ch´1
T ||∇e||T ||rh||T ,

where C is a constant independant of hT and rh.

Also by Cauchy-Schwarz and (2.9) of the Proposition 6 we have :

ż

T

rhbT prh ´ rq ď ||rhbT ||T ||rh ´ r||T

ď C||rh||T ||rh ´ r||T ,

with C a constant independant of hT and rh.

We can now bound the left hand side of (2.16) :
ż

T

r2
hbT ď C

`

||rh||T ||rh ´ r||T ` h
´1
T ||∇e||T ||rh||T

˘

,

and recalling the inequality (2.15) :

||rh||
2
T ď C

`

||rh||T ||rh ´ r||T ` h
´1
T ||∇e||T ||rh||T

˘

,

then :
||rh||T ď C

`

||rh ´ r||T ` h
´1
T ||∇e||T

˘

, (2.17)

Finally since rh ´ r “ fh ´ f ,

||rh||T ď C
`

h´1
T ||∇e||T ` ||fh ´ f ||T

˘

. (2.18)
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2. Now let us prove (2.13). Let E be an edge in Eh and bE its associated bubble
function. By the error equation (5) and since bE vanishes on B qE we have :

ż

qE

∇e ¨∇pJhbEq “
ż

qE

rJhbE `
1

2

ż

E

J2
hbE.

Therefore :
1

2

ż

E

J2
hbE “

ż

qE

∇e ¨∇pJhbEq ´
ż

qE

rJhbE. (2.19)

Let us bound the first integral of the right hand side. Using Cauchy-Schwarz and the
inequality (2.11) of the Proposition 7 we obtain :

ż

qE

∇e ¨∇pJhbEq ď ||∇e|| qE||∇pJhbEq|| qE

ď ||∇e||
qE||JhbE||H1p qEq

ď Ch
´1{2
qE
||∇e||

qE||Jh||E

where C is a constant independant of h
qE and Jh.

The second integral is also bound with Cauchy-Schwarz and (2.11) in Proposition 7 :
ż

qE

rJhbE ď ||r|| qE||JhbE|| qE

ď Ch
1{2
qE
||r||

qE||Jh||E.

Now if we apply these two inequalities to (2.19) :

1

2

ż

E

J2
hbE ď C

´

h
´1{2
qE
||∇e||

qE||Jh||E ` h
1{2
qE
||r||

qE||Jh||E

¯

.

By the first inequality (2.10) in Proposition 7 we have :

||Jh||
2
E ď C

ż

E

J2
hbE

ď C
´

h
´1{2
qE
||∇e||

qE||Jh||E ` h
1{2
qE
||r||

qE||Jh||E

¯

,

then,
||Jh||E ď C

´

h
´1{2
qE
||∇e||

qE ` h
1{2
qE
||r||

qE

¯

.

Finally if we apply the triangular inequality to (2.17) we get :

||r||
qE ´ ||r ´ rh|| qE ď ||r ´ pr ´ rhq|| qE “ ||rh|| qE ď Cph´1

qE
||∇e||

qE ` ||r ´ rh|| qE ,
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so
||r||

qE ď C
´

h´1
qE
||∇e||

qE ` ||r ´ rh|| qE

¯

,

and
h

1{2
qE
||r||

qE ď C
´

h
´1{2
qE
||∇e||

qE ` h
1{2
qE
||r ´ rh|| qE

¯

.

Then

||Jh||E ď C
´

h
´1{2
qE
||∇e||

qE ` h
1{2
qE
||r ´ rh|| qE

¯

Now if we apply the local quasi-uniformity of the mesh we get the existence of a constant
C only depending on δ1 such that :

h
qE ď ChE.

Applying this to the precedent inequality gives :

h
1{2
E ||Jh||E ď Cp||∇e||

qE ` hE ||f ´ fh|| qEq. (2.20)

with C a constant independant of h but depending on the regularity of the mesh.

To show (2.14), on one hand we take the square of (2.18), use the convexity of square on
the right hand side, sum over all triangles of the mesh and take the fh which realize the
oscillations of f to get,

ÿ

TPTh

h2
T ||rh||

2
T ď Cp||∇e||2Ω ` osc2

pfqq. (2.21)

On the other hand we take the square of (2.20), use the convexity of square, sum over all
the interior edges, bound the sums over edges of the right hand side by sums over triangles
and take the fh which realize the oscillations to obtain,

ÿ

EPEI
h

hE ||Jh||
2
E ď C

¨

˝

ÿ

EPEI
h

||∇e||2
qE `

ÿ

EPEI
h

h2
E ||f ´ fh||

2
qE

˛

‚

ď C
`

||∇e||2Ω ` osc2
pfq

˘

(2.22)

Adding (2.21) and (2.22) and taking the square root finally gives,

Eres ď C
`

||∇e||2Ω ` osc2
pfq

˘1{2
,

with a constant C which only depends on the regularity of the mesh.

Note : It is important to notice that this previous result do not need any additionnal hy-
pothesis for the regularity of the solution u.

21



2.2 Bank and Weiser a posteriori error estimator
Now we will adapt the a posteriori error estimator of Bank and Weiser (abbreviated as BW)
to the Laplace equation with Dirichlet boundary condition. The remainder of this section is
just a rewriting of what is done in [3], in the case of our problem.

Let us start with the equation of the error given in the Proposition 5. By Cauchy-Schwarz
inequality and trace theorem we can check that for each triangle T in Th, the function FT is
linear and continuous. So with the Lax-Milgram theorem ([5], Chap. 5.3) we can build on
the Proposition 5 to define the BW error estimator :

Definition-Proposition 1 (BW a posteriori error estimator). Let T be a triangle of Th. We
denote by ě the unique solution in V 0

h of the following problem :
ż

T

∇ě ¨∇vh “ FT pvhq, (2.23)

for all vh in V 0
h pT q, and where the linear form FT is defined in (2.2). We call BW a posteriori

error estimator and denote EBW the estimator :

EBW “

˜

ÿ

TPTh

||∇ě||2T

¸1{2

.

Note : The equation (2.23) will be also usefull in its global form :
ż

Ω

∇ě ¨∇vh “
ÿ

TPTh

ˆ
ż

T

rvh

˙

`
ÿ

EPEI
h

ˆ
ż

E

Jh tvhu

˙

, (2.24)

for all vh in V 0
Th .

Another equation will be usefull afterward :

Proposition 8. For any vh in V f
h the following equation stand :

ż

Ω

∇ě ¨∇pId´Iqvh “

ż

Ω

rvh `
ÿ

EPEI
h

ż

E

Jhvh. (2.25)

Proof. If we rewrite equation (2.23) of Definition-Proposition 1 in the same way than in
Theorem 4 we get

ż

Ω

∇ě ¨∇vh “
ż

Ω

pf `∆uhqvh `
ÿ

EPEI
h

ż

E

Jhvh, (2.26)

for all vh in Vh Ă H1
0 pΩq. And by Galerkin orthogonality
ż

Ω

∇ě ¨∇vh “
ż

Ω

pf `∆uhqvh `
ÿ

EPEI
h

ż

E

Jhvh “ 0. (2.27)
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Also, if we take any vh in V f
h then wh :“ pId´Iqvh belongs to V 0

h by definition of the
interpolant I. So we can use this function in the equation (2.23) and by (2.27), since Ivh
belongs to Vh, we got :

ż

Ω

∇ě ¨∇wh “
ż

Ω

pf `∆uhqwh `
ÿ

EPEI
h

ż

E

Jhwh

“

ż

Ω

pf `∆uhqvh `
ÿ

EPEI
h

ż

E

Jhvh,

(2.28)

for all vh in V f
h .

As we did for the residual a posteriori estimator, we will give the result of efficacity and
fiability of the BW estimator,

Theorem 6. It exists a positive constant γ ă 1 which depends on the regularity of the mesh,
on k the degree of polynomials in Vh and on the choice of the interpolant I but independant
of h such that,

p1´ β2
q
1{2
||∇e||Ω ď p1´ γq

´1{2EBW ` C oscpfq, (2.29)

and,
EBW ď p1` C

req ||∇e||Ω ` C oscpfq, (2.30)

where C
re P r0; 1s is a constant depending on another a posteriori error estimator from [3].

Note : We need to say few things about the different constants which appear in the previous
result :

‚ First, in the original paper [3] the autors build the fiability and efficiency of the BW
estimator on the equivalence between EBW and another a posteriori estimator which is
equivalent to the error. This is where the constant C

re come from.

‚ Then we can notice that we did not specify the origin of the constant β. In fact, this
constant come from the crucial saturation assumption that we will describe in the next
chapter.

‚ Finally we can ask the question of the asymptotic exactness of the BW estimator, in
other words the fact of having lim

hÑ0
EBW “ ||∇e||Ω. We could deduce this property from

the precedent Theorem, only if the constants p1 ´ β2q, p1 ´ γq and p1 ` C
req tend to

1 when h go to zero. But as we said in the theorem, the constant γ do not depends
on h. Then we can not deduce the asymptotic exactness of the BW estimator from
the previous result. However we can always hope that when h tends to zero, the BW
estimator get really close to the true error.
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Before talking of this assumption, we need to prove the slight changing we have made in
Theorem 6 with respect to the original result.

Proof. The proof of this result is given in [3] and applying it to the Poisson problem is
straight. We only exchange the second term of the right hand side in the original result
with the oscillations of f and we need to prove that we can do this exchange. The originals
inequations state as follow,

p1´ β2
q
1{2
||∇e||Ω ď p1´ γq

´1{2EBW ` C0 ||∇eVh ||Ω ,

and,
EBW ď p1` C

req ||∇e||Ω ` C0 ||∇eVh ||Ω ,

where eVh is the difference between the approximation uh and U which is the computed
approximation of u, in other words in U we include all the approximations that the computer
need to do to approach u. In our case we will assume that U is the solution in Vh of the
following equation,

ż

Ω

∇U ¨∇vh “
ż

Ω

fhvh, @vh P Vh, (2.31)

where fh is an approximation of f which belongs to V g
h .

So now, we need to prove the below inequality,

||∇eVh ||Ω “ ||∇puh ´ Uq|| ď C oscpfq,

with a constant C independ of h.

If we restrict the two equations (1.5) and (2.31) to a triangle T of the mesh and substract
them we get,

ż

T

∇puh ´ Uq ¨∇vh “
ż

T

pf ´ fhqvh.

Then, by Cauchy-Schwarz inequality,
ż

T

∇puh ´ Uq ¨∇vh ď ||f ´ fh||T ||vh||T . (2.32)

By the norm equivalence in finite dimension and a scaling argument (Proposition 3), we have
the existence of a constant C independant of h such that for every vh in Vh,

||vh||T ď ChT ||∇vh||T .

Now if we take vh “ uh ´ U in the precedent inequation and in (2.32) we get,

||∇puh ´ Uq||2 ď ChT ||f ´ fh||T ||∇puh ´ Uq|| .

Dividing by ||∇puh ´ Uq||, taking the square of the result and summing on all the triangles
of the mesh gives,
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ÿ

TPTh

||∇puh ´ Uq||2T ď C
ÿ

TPTh

h2
T ||f ´ fh||

2
T .

then,
˜

ÿ

TPTh

||∇puh ´ Uq||2T

¸1{2

ď C

˜

ÿ

TPTh

h2
T ||f ´ fh||

2
T

¸1{2

.

Finally if we take fh which realize the oscillations of f ,

||∇puh ´ Uq||Ω “ ||∇eVh || ď C oscpfq.

2.3 About the saturation assumption of Bank and Weiser
The original paper [3] is mainly based on a conjecture called saturation assumption. In [3]
this assumption is given in the following form (with our notations),

Hypothesis 1. It exists β “ βphq a real valued function such that lim
hÑ0

β “ 0 and such that
we have the following boundary :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
`

ÿ

EPEI
h

¨

˚

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

h
1{2
E

$

&

%

B

´

u´ ufh

¯

Bn

,

.

-

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

E

˛

‹

‚

ď β2
||∇pu´ uhq||2Ω . (2.33)

Then, the constant β of this assumption is the one used in Theorem 6. The inequality of this
assumption means that the approximation of u by ufh is better than that by uh. To clarify
this note we give a simpler form of the saturation assumption,

Hypothesis 2 (Saturation assumption). It exists α “ αphq a real valued function such that
lim
hÑ0

α “ 0 and such that we have the following boundary,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω
ď α ||∇pu´ uhq||Ω . (2.34)

Proof. To replace the saturation assumption of Bank-Weiser by its simpler form we need to
prove that it exists a constant C independant of h such that,

ÿ

EPEI
h

¨

˚

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

h
1{2
E

$

&

%

B

´

u´ ufh

¯

Bn

,

.

-

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

E

˛

‹

‚

ď C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
. (2.35)
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We can prove this using the trace theorem, the Poincaré’s inequality and the propositions of
scaling. Let us start with rT the reference triangle and rw a function of H1

0 p
rT q. By Theorem

1 we have,

|| rw||H1{2pB rT q ď C || rw||H1p rT q . (2.36)

Using Poincaré inequality of Proposition 1 on the right hand side gives a constant C which
only depends on rT such that,

|| rw||H1{2pB rT q ď C || rw||H1p rT q ď C ||∇
rs rw|| rT .

Concerning the left hand side of (2.36) we just need to use the inclusion H1pB rT q Ă H1{2pB rT q
which gives,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B rw

Bn |rs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B rT

ď || rw||H1{2pB rT q ď C ||∇
rs rw|| rT .

Finally,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B rw

Bn |rs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B rT

ď C ||∇
rs rw|| rT . (2.37)

It remains to use the scaling propositions, Proposition 3 for the right hand side term and
Proposition 4 for the left hand side. Then, we get for T a triangle of the mesh and E an
edge which belongs to ETh

Ş

EIh ,

h
1{2
E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bw

Bn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

ď C ||∇w||T . (2.38)

Now if we restrict (2.35) to an edge E of EIh which is shared by the two triangles T1 and
T2 and detail the average in the left hand side we get,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

h
1{2
E

#

Bpu´ ufhq

Bn

+ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

“ h
1{2
E

1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bpu´ ufhq

Bn
|T1 `

Bpu´ ufhq

Bn
|T2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

Using triangular inequality and (2.38) we get,

h
1{2
E

1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bpu´ ufhq

Bn
|T1 `

Bu´ ufh
Bn

|T2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

ď h
1{2
E

1

2

˜
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bpu´ ufhq

Bn
|T1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bu´ ufh
Bn

|T2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

¸

ď C

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

T1
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

T2

˙

.

So,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

h
1{2
E

#

Bpu´ ufhq

Bn

+
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

ď C

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

T1
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

T2

˙

,
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and taking the square and using its convexity gives,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

h
1{2
E

#

Bpu´ ufhq

Bn

+
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

E

ď C

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

T1
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

T2

˙

,

and if we sum over the interior edges,

ÿ

EPEI
h

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

h
1{2
E

#

Bpu´ ufhq

Bn

+
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

E

˛

‚ď C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇pu´ ufhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
.

As we notice right below Theorem 6, this theorem is valid only under the saturation
assumption. A natural question arise :

When this assumption it is valid ?

Unfortunately, we can find very simple cases which not verify this assumption. Here is a
particulary simple example, given in [7]. We consider the Poisson equation,

´∆u “ f,

with the Dirichlet boundary condition, on the domain Ω which is a square and on which we
define a very simple mesh as follow,

Then, we take the data f piecewise constant as follow,

Moreover if we take k “ 1, in other words if uh is a continuous piecewise linear approximation
of u and ufh a continuous piecewise quadratic approximation of u from the respective spaces
Vh and V f

h , we have,
ż

Ω

fφ “ 0, @φ P Vh, V
f
h .
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And this implies,

uh “ ufh “ 0.

Then as a result, in this case the equation (2.34) of the saturation assumption gives,

||∇u|| ď α ||∇u|| ,

which is clearly false since α ă 1.

The work of W.Dorfler and R.H.Nochetto [7] suggests that the failure of this assumption
is due to the too strong oscillations of the data f and to a too coarse mesh. In [7] they set
the following result which link the saturation assumption to the oscillations of f at the patch
level.

Theorem 7 ([7]). There exists a constant 0 ă µ ă 1 solely depending on shape regularity of
the mesh, but independant of u and f , such that if,

oscDNpfq ď µ ||∇pu´ uhq||Ω

holds, then the saturation assumption (2.34) is valid with α :“ p1´ µ2q1{2.

In this theorem, the term of oscillations of f , namely oscDNpfq represent the oscillations
of f at the patch level. More precisely, for an interior node x of the mesh we denote

fx :“ measpηxq
´1

ż

ηx

f,

and

oscDNpfq :“

¨

˝

ÿ

xPN I
h

hx ||f ´ fx||
2
ηx

˛

‚

1{2

.
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Chapter 3

Equivalence between residual and BW
estimators

In this chapter we will show a frame of the BW estimator with the residual estimator.
The final goal is to frame the error e with the BW estimator, using the results on residual
estimation and without any regularity hypothesis on the solution u, particulary without the
saturation hypothesis in [3].

3.1 Upper-bound
Let us begin with the following theorem which gives an upper-bound for Eres :

Theorem 8. There exists a positive constant C which depends only on the mesh regularity
such that :

EBW ď CpE2
res ` osc2

pfqq1{2.

Proof. Let T be a triangle of the mesh Th. Let us take vh “ ě P V 0
h pT q in the equation

(2.23), introduce fh an approximation of the data f which belongs to V g
h pT q and use the

Cauchy-Schwarz inequality :

||∇ě||2T “
ż

T

pfh `∆uhqě `
1

2

ż

BT

Jhě`

ż

T

pf ´ fhqě

ď ||fh `∆uh||T ||ě||T `
1

2
||Jh||BT ||ě||BT ` ||f ´ fh||T ||ě||T .

(3.1)

Then by Poincaré’s inequality of Proposition1 (or by norm equivalence in finite dimen-
sion), we have for any rvh in V 0

h p
rT q,

||rvh||T ď C ||∇
rsrvh|| ,

with a constant C independant of h. Then, by Proposition 3, for any triangle T of the mesh
if we take rvh “ vh ˝ ST ,

||vh||T ď ChT ||rvh|| rT ď ChT ||∇rsrvh|| rT ď ChT ||∇svh||T .
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So if we take vh “ ě we get,
||ě||T ď ChT ||∇ě||T . (3.2)

By the Theorem 1 we have the existence of a constant C such that for any rvh in V 0
h p

rT q,

||rvh||B rT ď C ||rvh||H1p rT q ,

and by Proposition 1,
||rvh||B rT ď C ||∇

rsrvh|| rT .

By Proposition 4 for the left hand side and Proposition 3 for the right hand side,

h
´1{2
T ||vh||BT ď C ||∇svh||T ,

Finally if we take vh “ ě,
||ě||

BT ď Ch
1{2
T ||∇ě||T . (3.3)

So, using (3.2) and (3.3) in (3.1) get,

||∇ě||2T ď C
`

hT ||fh `∆uh||T ||∇ě||T ` hT ||f ´ fh||T ||∇ě||T `
a

hT ||Jh||BT ||∇ě||T
˘

,

If we divide by ||∇ě||T we obtain :

||∇ě||T ď C
´

hT ||fh `∆uh||T ` hT ||f ´ fh||T `
a

hT ||Jh||BT

¯

.

Now taking the square, using the convexity property and summing on the triangles of the
mesh gives :

ÿ

TPTh

||∇ě||2T ď C

˜

ÿ

TPTh

h2
T ||fh `∆uh||

2
T `

ÿ

TPTh

h2
T ||f ´ fh||

2
T `

ÿ

TPTh

hT ||Jh||
2
BT

¸

.

Finally, taking the square root, taking fh which realize oscpfq and changing the last sum in
a sum over the edges gives :

EBW ď C
`

E2
res ` osc2

pfq
˘1{2

.

3.2 Lower-bound
Before setting the lower-bound we need to give some recalls about Legendre polynomials (see
[6] Chap.4.7.8).

Definition 3 (Legendre polynomials). On the interval I “ r´1; 1s we define the nth Legendre
polynomial as follow,

Pnpsq “
1

2nn!

`

ps2
´ 1qn

˘pnq
.
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So defined, the family tPnunPN is an orthogonal basis of L2pr´1; 1sq, we also have for any
n,

Pnp1q “ 1,

and since, Pnp´sq “ p´1qnPnpsq,

Pnp´1q “ p´1qn.

Furthermore the first Legendre polynomials are given by,

P0psq “ 1, P1psq “ s, P2psq “
1

2
p3s2

´ 1q.

If E belongs to Eh let us now denote pPE,n,xqnPN the family of Legendre polynomials scaled
to the edge E and if x and x1 are the bounds of E we assume :

‚ PE,n,xpxq “ 1 and PE,n,xpx1q “ p´1qn,

‚

ż

E

PE,n,xPE,l,x “ δn,l, for all n and l in N,

where δn,l is the Kronecker symbol.

We will change a little bit the family pPE,n,xqnPN and we define the polynomial LE,n,x as :

LE,n,x “
PE,n,x ` PE,n`1,x

2
,

such that :

‚ LE,n,x belongs to Pn`1pEq,

‚ LE,n,xpxq “ 1 and LE,n,xpx1q “ 0 for all x1 P Nh,

‚

ż

E

LE,n,xq “ 0 for all polynomial q in Pn´1pEq.

We also need the following definition, in the case of k “ 1,

Definition 4. Let x be a mesh node in Nh. We construct a function ψx associated to x such
that :

i) ψx belongs to V f
h ,

ii) supppψxq “ ηx,

iii) ψx “ LE,1,x for any edge E touching x.

We also set rψ0 the function defined as above and associated to the node p0, 0q on the reference
triangle rT .
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The above function ψx is well defined. Indeed if k “ 1, the degrees of freedom of the
finite elements space V f

h (which is a space of quadratic polynomials) are the vertices and the
middle of each edge. To properly define ψx on a triangle T of ηx we just need to specify these
values in each degree of freedom, and this is done as we can see on the next figure,

Since ψx is well defined on each triangle of ηx, so it is on ηx.

Now we give the main result, namely the lower-bound of EBW by Eres,

Theorem 9. There exists a positive constant C only depending on the regularity of the mesh,
such that :

Eres ď CpEBW ` oscpfqq.

Proof. We only give the proof for linear finite elements (i.e. k=1).
We start by noticing that in this case since uh is a piecewise linear polynomial, ∆uh “ 0

and we have :

Eres “

˜

ÿ

TPTh

h2
T ||fh||

2
T `

ÿ

EPEh

hE

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s
Buh
Bn

{ˇ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

E

¸1{2

,

where fh is a piecewise polynomial approximation of f which belongs to the space V g
h . Then

for k “ 1, fh is piecewise constant on each triangle. So on a triangle T of the mesh we take
fh :“ fT the average of f on T , in other terms :

fT “
1

measpT q

ż

T

f.

Since Jh is a polynomial function in P0 by definition of ψx we have
ÿ

EPEI
h

ż

E

Jhψx “ 0,

so if we take vh “ ψx P V
f
h , (2.28) becomes :

ż

ηx

∇ě ¨∇pId´Iqψx “
ż

ηx

fψx.
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Introducing f ´ fh we get :
ż

ηx

fhψx “

ż

ηx

∇ě ¨∇pId´Iqψx ´
ż

ηx

pf ´ fhqψx. (3.4)

Let us deal with the left hand side. First, since fh is constant on each triangle we have
for each triangle T :

||fh||
2
T “

ż

T

f 2
T

“ f 2
T measpT q,

so,

fT “
||fh||T

measpT q1{2
.

Then, setting hx “ max
TPηx

phT q, using a similar argument than in 1. of Proposition 3 and using

the local quasi-uniformity (1.4) gives :

ˇ

ˇ

ˇ

ˇ

ż

ηx

fhψx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPηx

ż

T

fTψx

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPηx

fT

ż

T

ψx

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPηx

||fh||T
measpT q1{2

ż

T

ψx

ˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPηx

C
||fh||T

measpT q1{2
h2
T

ż

rT

rψ0

ˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPηx

C
||fh||T

measpηxq1{2
h2
T

ż

rT

rψ0

ˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPηx

C
||fh||T

measpηxq1{2
ˆ
h2
x

δ2
1

ż

rT

rψ0

ˇ

ˇ

ˇ

ˇ

ˇ

.

Yet, by (1.2) :
measpηxq

1{2
ď hx cardpηxq ď hxC

1
0,

then
ˇ

ˇ

ˇ

ˇ

ż

ηx

fhψx

ˇ

ˇ

ˇ

ˇ

ě
ÿ

TPηx

C ||fh||T
hx
δ2

1

ż

rT

rψ0.
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and finally
ˇ

ˇ

ˇ

ˇ

ż

ηx

fhψx

ˇ

ˇ

ˇ

ˇ

ě Cpδ1qhx
ÿ

TPηx

||fh||
2
T , (3.5)

with Cpδ1q “

ˇ

ˇ

ˇ

ˇ

C

C 10δ
2
1

ż

rT

rψ0

ˇ

ˇ

ˇ

ˇ

is only depending on δ1 of local quasi-uniformity of the mesh.

Now we estimate the right hand side of (3.4) using triangular inequality, Cauchy-Schwarz
and since ψx belongs to V f

h , Theorem 2 :
ˇ

ˇ

ˇ

ˇ

ż

ηx

∇ě ¨∇pId´Iqψx ´
ż

ηx

pf ´ fhqψx

ˇ

ˇ

ˇ

ˇ

ď ||∇ě||ηx ||∇pId´Iqψx||ηx

`||f ´ fh||ηx ||ψx||ηx

ď C||ψx||ηx
`

h´1
x ||∇ě||ηx

`||f ´ fh||ηxq .

ď C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rψ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rT

`

h´1
x ||∇ě||ηx

`||f ´ fh||ηxq .

(3.6)

If we gather (3.5) and (3.6) we obtain :

hx||fh||ηx ď C
`

||∇ě||ηx ` hx||f ´ fh||ηx
˘

,

where C depends on the interpolation operator I and on the regularity of the mesh but is
independant of h.

Taking the square, using its convexity and summing on all nodes of the mesh get :
ÿ

xPNh

h2
x ||fh||

2
ηx
ď C

ÿ

xPNh

`

||∇ě||2ηx ` h
2
x ||f ´ fh||

2
ηx

˘

. (3.7)

Now notice that every triangle of the mesh is counted three times when we sum over all
the nodes. Then if we change the sums over nodes into sums over triangles we obtain on one
hand :

ÿ

xPNh

h2
x||fh||

2
ηx ě 3

ÿ

TPTh

h2
T ||fh||

2
T . (3.8)

And on the other hand, using the local quasi-uniformity of the mesh (1.4) we have for
any function v in H1

0 pΩq,
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ÿ

xPNh

h2
x ||∇v||

2
ηx
“

ÿ

xPNh

ÿ

TPηx

h2
x ||∇v||

2
T

“
ÿ

TPTh

ÿ

x s.t TPηx

h2
x ||∇x||

2
T

ď
ÿ

TPTh

ÿ

x s.t. TPηx

δ2
1h

2
T ||∇x||

2
T

ď
ÿ

TPTh

3δ2
1h

2
T ||∇x||

2
T .

Applying this in the following sum we get,

C

˜

ÿ

xPNh

||∇ě||2ηx `
ÿ

xPNh

h2x||f ´ fh||
2
ηx

¸

ď 3C

˜

ÿ

TPTh

||∇ě||2T ` δ21
ÿ

TPTh

h2T ||f ´ fh||
2
T

¸

ď 3C

˜

ÿ

TPTh

p||∇ě||2T q ` δ21 osc2pfq

¸

.

(3.9)

Then combining (3.7), (3.8) and (3.9) we finally get :

ÿ

TPTh

h2
T ||fh||

2
T ď C

˜

ÿ

TPTh

p||∇ě||2T q ` δ2
1 osc2

pfq

¸

. (3.10)

with a constant C only depending on I and on δ1 of the local quasi-uniformity.

It remains now to bound the terms in Eres containing the jumps Jh. This proof can be
done in the same way for any k P N but is based on the previous step. Consider also bE
the usual bubble function defined in Definition 2. Let us set the following application for an
integer l,

Plp qEq ÝÑ PlpEq
ph ÞÝÑ ph|E

,

this application maps a polynomial defined on qE to its restriction to E. Since this application
is a surjection, we can extend any polynomial gh in PlpEq to a polynomial of Plp qEq. So lets
extend Jh from E to qE by a polynomial still denoted by Jh. Since Jh belongs to Pk´1p qEq

and bE belongs to P2p qEq we have that JhbE belongs to V f
h p

qEq. Now if we set vh “ JhbE in
(2.25) we get :

ż

E

J2
hbE “

ż

qE

∇ě ¨∇pId´IqJhbE ´

ż

qE

rJhbE.

By Cauchy-Schwarz and Theorem 2 :
ż

E

J2
hbE ď

´

CLh
´1
qE
||∇ě||

qE ` ||r|| qE

¯

||JhbE|| qE.
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By shape regularity of the mesh, it exists a constant C only depending on δ0 such that :

h´1
qE
ď Ch´1

E ,

then :
ż

E

J2
hbE ď

`

CLCh
´1
E ||∇ě|| qE ` ||r|| qE

˘

||JhbE|| qE.

Moreover, by Proposition 7 we have
ż

E

J2
h ď C

ż

E

J2
hbE,

then :
ż

E

J2
h ď C

`

h´1
E ||∇ě|| qE ` ||r|| qE

˘

||JhbE|| qE.

Also by Proposition 7 we get
||JhbE|| qE ď Ch

1{2
E ||Jh||E.

So, using this last inequality and multiplying by h1{2
E gives :

h
1{2
E

ż

E

J2
h ď C

`

||∇ě||
qE ` hE||r|| qE

˘

||Jh||E.

Dividing by ||Jh||E, taking the square and using its convexity :

hE||Jh||
2
E ď C

`

||∇ě||2
qE
` h2

E||r||
2
qE

˘

.

And if we sum over all edges of the mesh and changes the sums of the right hand side into
sums on triangles we get :

ÿ

EPEh

hE||Jh||
2
E ď 3C

˜

ÿ

TPTh

||∇ě||2T `
ÿ

TPTh

h2
T ||r||

2
T

¸

. (3.11)

Now by choosing fh such that oscpfq is realised, by triangular inequality and by convexity
of the square we have :

ÿ

TPTh

h2
T ||f `∆uh||

2
T ď 2

˜

ÿ

TPTh

h2
T ||fh `∆uh||

2
T `

ÿ

TPTh

h2
T ||f ´ fh||

2
T

¸

ď 2

˜

ÿ

TPTh

h2
T ||fh `∆uh||

2
T ` oscpfq2

¸

.

(3.12)

And for bound the term
ř

TPTh h
2
T ||fh ` ∆uh||

2
T we can use (3.10) (for the case k “ 1) and

we get :
ÿ

TPTh

h2
T ||fh `∆uh||

2
T ď C

˜

ÿ

TPTh

||∇ě||2T ` oscpfq2

¸

. (3.13)

36



Then combining (3.11), (3.12) and (3.13) we obtain :

ÿ

EPEh

hE||Jh||
2
E ď C

˜

ÿ

TPTh

||∇ě||2T ` oscpfq2

¸

, (3.14)

where C depends on the interpolant I and on the mesh regularity but does not depend on h.
Finally, combining and (3.10), taking the square root and using convexity of the square

gives the result :
˜

ÿ

TPTh

h2
T ||rh||

2
T `

ÿ

EPEh

hE||Jh||
2
E

¸1{2

ď C
`

||∇ě||2Ω ` osc2
pfq

˘1{2
,

with a constant C which depends only on the mesh regularity and the interpolant I.
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Chapter 4

Conclusion and opening

The main idea of this work was to maintain a frame as general as possible concerning the
regularity of the solution u to show that the a posteriori error estimator of Bank-Weiser has
good properties of convergence even when the problem concerned admits a singuliar solution.

The first step was to do whithout the saturation assumption which exclude this kind of
problems. The next step is naturally to generalize the result of the lower-bound to finite
elements spaces of higher order polynomials.

In parallel, a numerical study of the BW estimator on test problems which admit singuliar
solutions (like on a "L" domain or on a slit square) could be give an idea of the efficiency
and the behavior of this estimator.

Another way to study the convergence properties of BW estimator would be through
its asymptotic exactness. The asymptotic exactness of BW estimator is not guaranteed ac-
cording to the present constants which appear in the estimations of Theorem 6. However,
in their work [8], R.Durán and R.Rodriguez have already proved that for problems which
admit reguliar solutions (H3) and for particulary reguliar meshes (parallel meshes) the BW
estimator is asymptotically exact.
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