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Chapter 1

Introduction

1.1 Motivation

This work is the sequel of a precedent Master thesis on the paper [3] of R. E. Bank and
A. Weiser. This paper deals with three new a posteriori error estimators for elliptic partial
differential equations which are equivalent to the error (in the norm of the energy) under a
binding assumption called saturation assumption.

The first aim of the second chapter is to describe this assumption and precise why it is a
demanding assumption. The second one is to say few words about examples of problems for
which this assumption is not satisfied.

In the third chapter we will work on the third a posteriori error estimator from [3], here-
after called BW error estimator. The aim is to prove that this estimator is equivalent to
the error whithout using the saturation assumption. In order to do this, we will prove the
equivalence between the residual a posteriori error estimator and BW error estimator in the
norm of the energy and without the saturation assumption, firstly for piecewise linear fi-
nite elements and hopefully for finite elements of higher order. This equivalence result for
piecewise linear finite elements has been already proved in a different way in [10] of R. H.
Nochetto. So we hope that we could generalize it to finite elements of arbitrary order.

I want to warmly thank my directors Franz Chouly and Alexei Lozinski for their help in
the redaction of this Master thesis, in the developement of the proof and more generally in
my entire second year of Master.



1.2 Preliminary definitions

Our study will take place on a bounded open polygon of R?, denoted by Q and of nonempty
interior.

First of all, we give general definitions about Sobolev spaces. We give also the Trace
theorem and the Poincaré’s inequality. The definitions of Sobolev spaces can be find in [1],
the Trace theorem in [9] and the Poincaré’s inequality in [5].

For w a nonempty interior open subset of RY with N a positive integer and m a non
negative integer, the Sobolev space H™(w) is defined by :

H™(w) := {v € L*(w) such that, Ya e NV, |a| <m, 0°ve L*(w)},
where 0%v is the o™ partial derivative of v in the sense of distributions.

For each m, the space H™(w) is a Hilbert space for the following inner product, defined for
¢ and x in H™(w) by :

(807 X)m,w = Z (aagp7 8ax)w ?

aeNN
lal<m

of associated norm :

=

lellme == | X, ll0%ll2

aeNN
|al<m

We will also need the fractional Sobolev spaces. For 0 < s < 1, the so-called Sobolev
space with fractional exponent or fractional Sobolev space is defined as,

H*(w) = {v e L*(w) such that, % € L*(w x w)} .
r—y
Furthermore, when s > 1 is not integer, letting o = s — [s] where [s] is the integer part
of s, H*(w) is defined as,
H*(w) = {ve H¥Y(w) such that, 0%v e H°(w), Yo, |a| = [s]}.
Let us also recall the usefull trace theorem,

Theorem 1 (Trace theorem, [9] Chap.B.3.5). Let Q2 be a bounded open set and 052 its polygo-
nal boundary. Let o : C°(Q) — C°(0Q) map functions in C°(QQ) to their trace on Q. Then,
we can continuously extend to H'(QY) the application o in an application, again denoted 7o,

such that vo : H'(Q) — HY2(09)), and,
® 7 1S surjective.

e The kernel of o is denoted Hj ().



The space Hj(w) is a Hilbert space for the inner product of H'(w) but also for the inner
product (V-, V)  according to the following Proposition :

Proposition 1 (Poincaré’s inequality, see [5] Chap. 9.4). If w is a bounded open set of R"
then there exists a constant C' only depending on w such that for all v in Hj(w) :

o]l < ClIVollo.

In particular, the application (u,v) —> f Vu- Vv is a scalar product on Hy(w) that induces

the norm ||V - ||, which is equivalent to the norm I et o)

A straightforward consequence of the Poincaré’s inequality is that the bilinear form

(u,v) —> J Vu - Vo is continuous and coercive on Hj(w) provided with the norm || - || 1),

in other terms there exists a constant C' only depending on w such that for all v in H}(w) :

J (V)2 = Cllol g, (1.1)

1.3 Poisson problem

For the sake of simplicity, we will treat a less general problem than in [10] and only consider
the Poisson problem with homogeneous Dirichlet boundary condition on a two-dimensional
domain. Hopefully it could be possible to extend the following results to more general cases,
like elliptic problems with Neumann boundary condition or mixed Dirichlet-Neumann bound-
ary conditions and for instance to linear elasticity problems.

Let f be a function which belongs to L?(Q2) and consider the following problem :
Problem 1. Find u : Q) — R such that :

—Au = in
u = 0 on 012,

The weak form of this problem is given by
Problem 2 (Weak form). Find a function u which belongs to H} () such that for all v in

HHQ) :
Lvu.w - Lfv.

Note : Since (u,v) — J Vu - Vv is a inner product on H} () and since v — fv is a

—

continuous linear form, then according to the Lax-Milgram theorem (see [5] Chap. 5 3) the
Problem [2 has an unique solution in Hg($2) denoted by u.



1.4 Discretization

Let {T,}n be a family of triangulations of €2 indexed by a nonnegative real constant h called
the size of T, and defined as :

h = maxh
TeT, T

where, for any 7" in 7, the real hr is the longest edge of the triangle T'.

We will suppose that the family {7} is shape regular, in other terms it exists a nonneg-
ative real constant dg such that for all 7, in {7}, and for all T"in Ty, if we denote by pr the
radius of the inscribed circle of T', we have :

pr = dohr.

Henceforth we will consider 7, a triangulation of {7,},. We will also denote by &, the
collection of edges of the mesh 7y, and &/ the collection of interior edges of Ty, in other words
the edges of &, which are not in 0. Let us denoted by A/, the set of all the nodes of 7, and
its subset A} of interior nodes.

Let us denote by 7, the set of all the neighbouring triangles of the node x, also called
patch of x or star of x. More precisely :

Ny = U T
TeTh,
T Nzx#2
For S which can be a triangle or an edge, we denotes by meas(S) the 2 dimensional
Lebesgue measure of S if S is a triangle and 1 dimensional Lebesgue measure if S is an edge.

Using the shape regularity of the mesh we can show that for any node z of the mesh, the
number of triangles in 7, is estimated by :

Cy < card(n,) < CY. (1.2)

with Cy = Q—W) and C’(’] - 2T

m—arcsin(dg arcsin(dp)



Proof. Let x be a node of the mesh. To bound the number of triangles in 7, we need to
bound the angles of these triangles corresponding to the vertice x,

In order to do this we will use the following formula, for a triangle T" if we denotes perim(7T)
its perimeter and since its area is given by meas(T') we have

~ 2meas(T)

~ perim(T) (13)

pr

In fact, let us split our triangle T into three triangles T}, T5 and T3 and denotes the corre-
sponding edge of T, ay, as and ag as follow

We have

and for each i € {1,2, 3},




So,

3 3 .
; T
meas(T)zza XPT:p?TZai:perlm( )XpT.

i=1 i=1

We get ((1.3)).

Now, for a triangle T of 7, if we denotes u and v the two vectors corresponding to the edges
of T touching =z, as follow

we have the following formula for the area of T',
[lull x J|v]| x sin(6)
2 J

where [|u]| is the Euclidian norm of w. Then if we use this in (|1.3) we get,

meas(T") =

_ [l > JJof[ > sin(6)

pr perim(7")

< h2. x sin(6)
hr

< hT sm(@)

Then since,
sin(0) > 2 > &,
hr
it implies that 6 €]0; 7| and,

arcsin(dg) < 6 < 7 — arcsin(dy).

Now if we number 6; for i € {1,--- ,card(n,)} each interior angle corresponding to a triangle
of n, we get,



card(nz) card(ng) card(n,c )

Z arcsin(dg) < Z 0; < Z 7 — arcsin(dy),
i=1

i=1

2
card(n,) x arcsin(dg) < W?%) < 7 — arcsin(dp),
arcsin(dg) - 1 _T= arcsin(dg)
2r  card(n,) 27 ’
2 27

< card(n,) <

7 — arcsin(dp) arcsin(dy)

]

Another consequence of the shape regularity is the local quasi-uniformity of the mesh
more precisely there exists a constant d; > 1 only depending on dy such that for all node z
in NV}, and all triangle T in 1), :

he < S1hr, (1.4)
where h, = max(hr).
Ten:

We also need to introduce the scaling application, denoted by Sy where T' is a triangle of

the mesh and defined in the following proposition :

Proposition 2 ([9], Chap. 1.3.2). Let T be the reference triangle in R? of vertices
{(0,0),(1,0),(0,1)} and T a triangle of the mesh Ty,. Then there exist an affine bijection Sy

mapping T on T such that :
ST T —T
Tr—x = JTf + bT,
where Jr is a real invertible matriz 2 x 2 which is also the Jacobian matriz of Sy and by is
a vector in R?.

Moreover, we can assume that for a node x of T, the application Sr send x on (0,0).

In the same way, we define a scaling application for edges. We can set E the reference
edge as the segment [(0,0), (1,0)]. Then we can define Sg as follow,

SEE—>E
%*—>$:JE%+I)E,

where Jg is a real invertible matrix 2 x 2 which is also the Jacobian matrix of Sg and bg is
a vector in R2.



Using these scaling applications we can set usefull results. In the sequel we will denote
by n the outside normal of 2 and we will use the same notation for the outside normal
of any triangle T' of the mesh or for an (arbitrary) normal of an edge E. Only when it is
necessary we will precise the origin of the normal, ng for a normal from the edge E, nr
for the outside normal of a triangle 7" etc. On another hand, we will denote by s the 2
dimensional variable on 7" and s the 2 dimensional variable on 7. We will use the same
notations for the 1 dimensional variables of ¥ and E. We also denote by V, and Vj the

different gradients relative to s and S respectively. In the same way we will denotes by ™
n |s

0- . o
and F the respectives normal derivatives.
on |z

Proposition 3 (|9], Chap. 1.5.1). With notations of Proposition |4 and if U is a function
which belongs to H'(T), let us define the function v on a triangle T such that :

v = 50851.
Then :
1. Chel[v]lz < [lvllr < C"he|[0]| 7,
2. C||Vsd|z < [|Vl|r < C'|| V|7,

all the constants only depends on the reqularity of the mesh and are independant of h.

Proposition 4. Let ¥ be a function which belongs to Hl(E’) and v defined as follow,
v="008;"
Then,
1ol = hig |19l

ov

an‘g

ov

.,

ov

< C'hy"” .
TL|§

E

2. Chy'”

E ‘ E
where the constants C' and C" only depends on the reqularity of the mesh and are independant

of h.

Let us now introduce different FE spaces : for k a non negative integer, V}, (resp. Vhf ,
resp. V/?) will be the continuous Py, (resp. Pj.q, resp. Py_;) FE space and V3¢ (resp.
Vhf A esp. th’disc) their discontinuous counterparts. If k£ —1 = 0 we will suppose that V!
is the discontinuous Py FE space, in other terms V};} = V)¢ “45¢Due to the Dirichlet boundary
condition we also assume that the functions in each FE space vanishes on 0f2.

We can now fix the discrete problem :



Problem 3 (Discrete problem). Find a function uy, which belongs to Vi, such that for all vy,
m Vh N

| vin-u = | ron (15)

We will denote by e the approximation error, defined by :
e =1u— up.

In the same way we can set the counterparts of the discrete problem in the spaces Vhf
and V)7,

Problem 4. Find a function u£ which belongs to Vhf such that for all v,]: mn Vhf :

f Vul - Vol = f fol, (1.6)
Q Q

and,

Problem 5. Find a function uj which belongs to V7 such that for all v in V)7 :

f Vi - Vo] = J ful. (1.7)
Q Q

In the sequel we will denotes by u{Z and uj the respective solutions of these problems.

To define the estimator of Bank and Weiser we need to introduce a Lagrange-based
polynomial interpolation operator Z such that :

7. Vhf,disc N V};q,disc’
and :
1. for all v, € th’disc, Ty, = vy,
2. for all vy, € Vhf , vy, belongs to V)Y (Z preserve continuity),

3. there exists a constant Cy depending on dy, k& (the maximum degree of polynoms in V},)
and Z but independant of h such that :

V(Z
Sup M g CO'
vheVJ,disc ||V/Uh| |Q
v #0

10



Let us denoted by V}? the kernel of the operator Z :

VY = {v, e VP Tw, = 0}.

In order to prove the fiability and efficacity results for the residual estimator, we also need
a quasi-interpolation operator for nonsmooth functions which respect the Dirichlet boundary
condition. We use for this the Bernardi-Girault quasi-interpolation operator which is intro-
duced in [4] and denoted R. For any function v in H} (), its image by the Bernardi-Girault
quasi-interpolant R belongs to V/,.

Now we can set interpolation error results corresponding at each interpolation operator :

Theorem 2 (Lagrange interpolation error, [2], Chap. 1.3.7). Let T' be a triangle of Ty, and s
and t two nonnegative reals with s in [0;1]. Then there exists a constant Cp, > 0 depending
on the regularity of the mesh Ty, on s and t and on the interpolant Z but which not depend
on h such that for all vy, € V;/ (T) we have :

v, — Z(vn)

Hs(T) < Cth«_s|Uh|Ht(T).

Theorem 3 (Bernardi-Girault interpolation error, [4]). Let T' be a triangle of Ty, and s be a
real in [0; 1] and t satisfy s <t < k + 1 then there exist a constant Cr > 0 depending on the
reqularity of the mesh Ty, on s and t and on the interpolant R but which is independant of
h such that for all ve HY(T) we have :

|U — R(U)|Hs(T) < CRhé«_S|’U|Ht(nT), (18)

and,

v =R(v)

where E is an edge of the element T'.

t—s—1/2
we(m) < Crhly ™10l s (1.9)

11



Chapter 2

Definitions of estimators

Let E in &, be an interior edge of the mesh which is shared between two triangles 7} and
T,, we denote by ng an arbitrary normal of F and we name 7T} the triangle which ng is its
outward normal. For a function v piecewise continuous on the mesh 7, and for an edge E in
En, we define the jump of v on E, denoted [v] 5 by :

[0]z (2) = vy, (2) = vy (2)-

If ¢ is a function in L*(Q), we define osc(p) the oscillations of the function ¢ by :

1/2
osels) = mfg( 3 h%nso—gohu%) |

@hevh T€7—h

2.1 Residual a posteriori error estimator

First of all, let us give a characterization of the error e :

Proposition 5 (Error equation). For all function v in Hg(Q2) we have :

JVeVW—ZP& (2.1)

TeTh
where, for all T in Ty, :
1
_@@y:frv+—f T, (2.2)
T 2 Jor
. oup,
with r:= f + Auy and J, = | —|.
on

Proof. Let v be a function of HZ(€2). So by definition of the error e we have :

JVe Vv—f Vu- Vv —fVuh Vv

ffv_fvuh vo.



Now we want to apply the Green formula to the second integral but the function uy is not
rather reguliar on € : we need at least H%(€2) and wuy, is only continuous. So we have to split
the integral into a sum of integrals on each triangle 7" of the mesh, where wu; is polynomial
and fairly reguliar. Then :

f Vuy, - Vo = J Vuy - Vo
Q

TeTh

0
= Z (J Aupv + ﬂv)
TeT, T or Ont
So if we replace this in (2.3):
8uh
VG'VU:Z (f +Aup)v — | —v .
Q Ter, VT or Onr
However, since v is in H}(f2) the following sum :
(3uh
TeTh or anT ’

is only a sum over the interior edges of the mesh. Moreover, each interior edge E of the mesh
is counted two times. Indeed, let us denote by 77 and 75 the two triangles which share E.
For a function v on €2 we also denote by v; and vy the restrictions of v to T} and T5. With
these notations we have :

J 8uh < ath é‘um >
= v + Vg | .
TeT;, or O 51 E 8nT1 E anTZ
Since v belongs to H} (), we have that v; = v, on E and if we use that ng = np, = —nr,
and the definition of the jump, we obtain :

f 6uh - J(auhl_auhQ)U
TeT;, GT 8nE ﬁnE

Ee&l

-3 LCED-
Jyveve= 3 (furawr) < = ([ [5]0)

I
Eeg;

Finally :

and if we write the last sum as a sum over triangles 7" we obtain :

13



freee- g (s 3, 5]
= > Fr(v).

TeT,

Let us now define the residual a posteriori error estimator :

Definition 1 (Residual a posteriori estimator). We define the residual a posteriori error
estimator, denoted by E,.s as :
9\ 1/2
E) 7
_6uh

8uh
Eres = h2 Aup| % + h —-—
(Z Pl fn+ Dunll7 + ) he o
where fn, € V7 is an approximation of the data f and —H s the jump of the normal

TeTh Ee&y
on

derivative of uy, on the edges. From now on we will denotes :

T = fn + Auy,

the interior residual and called Jp, := H%ﬂ the edges residual.
n

We can state the a posteriori estimation theorem :

Theorem 4. [t exists a positive constant Ci,es independant of h such that we have the
following boundary :

TES

1Vello < Chres (E%, + 0sc(f)?) .

Proof. As a first step, let us establish the Galerkin orthogonality. By the Problem [2] we have,

for all vy, in Vj, « H3(Q) :
J Vu - Vvh = J fUh,
Q Q

JVuh-Vvh :J fop.
Q Q

If we substract these two lines we obtain the Galerkin orthogonality :

and by the discrete Problem [3] :

J Ve - Vvh = 0. (24)
Q

14



Now let v be a function of H}(€) and Rv the interpolant of v which belongs to Vj,. By
(2.4) and by the error equation in Proposition [5| we have :

J Ve -VRv = Z f rRv + Z J JyRv = 0.
Q TeT, 7T Begl VF
So if we substract this line to the error equation we got for all v in Hj () :
J Ve-Vuv = Z J r(v—Rv) + Z f Jp(v — Rv),
Q TeT; T EEE}{ E
and by Cauchy-Schwarz :
J Ve-vo < S [rllr llo—Rollr + 3 ille lo — Rolls. (2.5)
Q

TeT), Eegl

By the Theorem 3| there exist a constant C' only depending on dy (the regularity of the
mesh) such that for all v in H}(Q) :

v = Rollr < Che|v]| i1 (yp),

and,

1/2
[v = Rol|s < Chig[[v]] 1 -

If we apply these inequalities and discrete Cauchy-Schwarz to (2.5)) we obtain :

| vevu< 3 Chalbrlle lollnny + 33 CHE bl ol

TeTh, Eeg&l
1/2 1/2
<C (Z |U|§p(nT)> (Z hgﬂl?“ll%)
TeTh TeTh
1/2 1/2
+ 1 D) 1l PRZIPALR
Eegl Eegl

Let us now establish that there exists two constants C' and C’ only depending on dy, the
regularity of the mesh, such that :

1/2
(Z Hvllip(w)> < Clol[m(), (2.6)

TeTh

and :
1/2

Z 011 () < Ol o)- (2.7)

Eegl

15



If we detail the left hand side of (2.6) we have :

Z HUH?{l(nT) = Z Z HUH?ﬂ(T')

TeT;, TeTy T'enr

= Z Z HUH%H(T')

T'eT, T s.t.
T’E’I]T

— Z #{TeT,st. T € nT}||v||fq1(T,)
TeTh

<C Z HUH%ﬂ(T’)

T'eTyh,

< CHUH?{%Q)’

where C' = max (#{T € Tp s.t. T"enr}). By (1.2) we can show that the constant C' is
'eTh

bounded by another constant which only depends on dy.
By a similar argument we can set the inequality (2.7)).

Then if we use (2.6) and (2.7)), the concavity of the function square root and Proposition
we get :

1/2

1/2
J Ve - Vo < O||v||mq (Z h?r!|?”|?r> + | D, el
Q TeT;, Eegl

1/2

<CIVollg [ D] Aallrllz + D) hellallz

TeTh Ee€l
And now applying the inequality (|I.1)) and substituting e in place of v give :
1/2

Vel < ClIVella | D5 BRIl + 35 hellally

TeTs Eeg}

Finally dividing by ||Ve||q, and using the triangular inequality gives :

16



1/2

IVello<C | D) Azllmall + D) hullJallz + Y5 hzllr —rallz

= Eee! =
1/2
<C [ D B3Nl + 25 halldally + D) A3llr —mllz
T€7-}L EE(C,‘}IZ T€77L

Now notice that r — r, = f — f, and when we take fj, such that :

2 Ballr = rallz = ose(f)?,

TeTh
we finally have :
IVello < € (B2, + ose(£)?)".

]

Now let us define the bubble functions and set some usefull results in order to prove the
efficiency of residual estimator.

Definition 2 (Bubble function, [2] Chap. 2.3.1). Let S be an element of the mesh Ty, which
can be a triangle, a node or an edge. We call bubble function associated to S and denoted bg
a function such that :

o bg € Pl(g) with | = 3 if S is a triangle and | = 2 if S is an edge,

. 652007185,

) b5>0m§,
e bs=0(1) in S,

where S = S if S is a triangle and S = TyJT, if S is an edge (11 and Ty are the two
triangles sharing E). We extend bg to all Q by setting bs =0 on Q\S.

Proposition 6 ([2] Chap. 2.3.1). Let T be a triangle of T, and br the bubble function
associated. Then there exists a constant C independant of hr such that for all vy, in Vi (T) :

M unlly < [ wkbr < Climl, 28)
T
and,

C M lonllr < llonbrllz + hrl[V (vnbr)llr < Clloallr. (2.9)

17



Proof. The proof consist in applying the norm equivalence in finite dimension on a reference
triangle T fixed once for all and such that hy = 1. Finally we prove the inequalities on each
triangle T' by using an application of scaling.

m

Let us now set the same theorem but for the edges of the mesh.

Proposition 7 (2] Chap. 2.3.1). Let E be an edge of the mesh and bg the corresponding
edge bubble function. Then there exists a constant C' independant of hg such that for all
function vy, of Vi (E) :

0Wm@<fﬁ%<mm% (2.10)
F

and,
W5 lonbells + g2 (IV (0nbe)|| 5 < Cllval e, (2.11)

where E = Ty Tz, T and Ty are the two triangles such that T} Tz =E.

Proof. The proof is similar to the one for the triangles.
]

Theorem 5 (Efficiency of residual estimator). There exists a constant C and C" only de-
pending on the reqularity of the mesh such that, for any triangle T of the mesh, we have

hellrulle < C (llellmery + he [|f = fullz) (2.12)

and for any interior edge E of the mesh,
1/2
Bl < € (lell e + 11 = fullz) - (2.13)
where E = Ty v Ty, Ty and Ty are the two triangles such that Ty n'Ty, = E and

hi = max(hr).
Tek

€
These two inequalities implies the existence of Cy s only depending on the regularity of the
mesh such that,

Eres < Caes (|| Vel + 05c2(£)) % (2.14)

Proof. We will use the Verfiirth’s bubble functions to prove (2.12)) and (2.13)).

1. Let us start with (2.12)). Let T be a triangle of 7, and by be the bubble function

associated. Moreover, we consider f;, an approximation of f in the FE space V}’ and
denote 7y, := f, + Auy. With these definitions we have that r, belongs to V},, and by
the Proposition |§| there exists a constant C' independant of hr and rj, such that :

[Irll7 < CJ rabr. (2.15)
T

18



Let us now apply the error equation (2.1 with v, = r,br € V. Since r,br vanishes on
0T we have :

J Ve - V(ThbT) = f TT'hbT
T T

:f r7rRbr —i—f T’ibT —f T}%bT.
T T T

L by = L Ve V(nbr) + L rabr(rn — 7). 216)

With Cauchy-Schwarz and the inequality (2.9)) of Proposition |§| on the first integral in
the right hand side :

Then :

\fvovwwﬂéHVWﬂWMwﬂM
T

< ||Vellr||rubr||ar )
< Chy'|Vellr||ral|r,

where C' is a constant independant of hy and rp,.

Also by Cauchy-Schwarz and (2.9) of the Proposition @ we have :

JVwﬂmﬂéwwMﬂmfﬂb
T

< Clirallrllra = rllr,

with C' a constant independant of hy and 7y,.
We can now bound the left hand side of (2.16]) :
J ribr < C(||rallzl|rn = rllr + b [|Vellrlrallr)
T

and recalling the inequality ([2.15]) :
lrallz < C (lrallellrn = rllz + hz'[[Vellz|lrallr) |

then :
rallr < C (|lra — rllz + hz'||Vellr) (2.17)

Finally since rp, —r = f, — f,

lralle < C (b I Vellr + Ilfn = fllz) - (2.18)

19



. Now let us prove (2.13). Let E be an edge in &, and bg its associated bubble
function. By the error equation and since by vanishes on 0F we have :

1
ﬁ Ve - V(Jubg) = ferth + §J Jibp.
E E E

Therefore : )

—f Jibg =J Ve - V(Jybg) —f rJnbg. (2.19)
2Je B B

Let us bound the first integral of the right hand side. Using Cauchy-Schwarz and the
inequality (2.11)) of the Proposition [7| we obtain :

ﬁ Ve - V(Jubg) < ||Vel| |V (Jnbe)||z
E

<|[VellgllJnbsll 5
~1/2
< Chi”||Vel gl Tl
where C' is a constant independant of hj and Jj,.
The second integral is also bound with Cauchy-Schwarz and (2.11)) in Proposition [7:

ferth < Il sl bl
FE

1/2
< ORIl 1w |

Now if we apply these two inequalities to (2.19)) :

1 -
3 | e <€ (5 2IVellplnlle + 12l )
K

By the first inequality (2.10]) in Proposition [7| we have :

HJhH%wJEJ,%bE

<C ( “Y21vell gl Jnlle + hg2||r||E||Jh||E) ,

E
then,
—1/2 1/2
1lle < © (b1l |+ B LIl ) -

Finally if we apply the triangular inequality to (2.17]) we get :
Irllz = 1lr =l < llr = (r =)l = llrall g < C(hg [[Vellg + [Ir —mall 5.

20



SO
Irllz < C (g 1Vells + I = allz)
and
Bl < C (hg (Ve + B2l = mlls) -
Then

—1/2 1/2
allp < € (hp1Vell + hY2lr = il

Now if we apply the local quasi-uniformity of the mesh we get the existence of a constant
C' only depending on d; such that :

hE < Chg.

Applying this to the precedent inequality gives :

hp | alle < CIVellz + b [1f = fall). (2.20)

with C' a constant independant of h but depending on the regularity of the mesh.

To show (2.14), on one hand we take the square of (2.18)), use the convexity of square on
the right hand side, sum over all triangles of the mesh and take the f; which realize the
oscillations of f to get,

>, M llrallz < C(|Vellg + osc*(f)). (2.21)

TeTh

On the other hand we take the square of (2.20)), use the convexity of square, sum over all
the interior edges, bound the sums over edges of the right hand side by sums over triangles
and take the f;, which realize the oscillations to obtain,

Mohpllhllz<C | > IVells+ D hEIIf — fll
Eeé‘,{ Eeé’é Eeé‘é (222)

< C (||Vellg + osc*(f))
Adding (2.21) and (2.22) and taking the square root finally gives,

1/2

F..<C (||V6H?2 + och(f)) ,

with a constant C' which only depends on the regularity of the mesh.
O

Note : It is important to notice that this previous result do not need any additionnal hy-
pothesis for the regularity of the solution wu.
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2.2 Bank and Weiser a posteriori error estimator

Now we will adapt the a posteriori error estimator of Bank and Weiser (abbreviated as BW)
to the Laplace equation with Dirichlet boundary condition. The remainder of this section is
just a rewriting of what is done in [3], in the case of our problem.

Let us start with the equation of the error given in the Proposition 5] By Cauchy-Schwarz
inequality and trace theorem we can check that for each triangle T in 7, the function Fr is
linear and continuous. So with the Lax-Milgram theorem (|5], Chap. 5.3) we can build on
the Proposition 9| to define the BW error estimator :

Definition-Proposition 1 (BW a posteriori error estimator). Let T be a triangle of T,. We
denote by € the unique solution in V¥ of the following problem :

fT Ve - V’Uh = FT(Uh), (223)

for all vy, in V;X(T'), and where the linear form Fr is defined in (2.2)). We call BW a posteriori

error estimator and denote Egy the estimator :

1/2
Epw = (Z IIVéIIQT) :

TeTh

Note : The equation (2.23)) will be also usefull in its global form :

L Vé - Vo, = T;-h (L mh) + ) (L Jh {vh}> : (2.24)

Eegl

for all v, in V7Qh )
Another equation will be usefull afterward :
Proposition 8. For any vy, in Vhf the following equation stand :
f Ve - V(Id —Z)vy, :J rop, + 2 J Jyup,. (2.25)
Q Q Eegl E

Proof. If we rewrite equation (2.23) of Definition-Proposition || in the same way than in
Theorem [ we get

JQ Veé-Vu, = fQ(f + Auh)vh + Z JE thh, (2.26)

I
Eeg;

for all v;, in V}, « H}(Q). And by Galerkin orthogonality

JQ Ve - Vvh = ‘L(f + Auh)vh + Z JhUh = 0. (227)

Eegf E
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Also, if we take any vy, in Vhf then wy, := (Id —Z)vy, belongs to V;! by definition of the
interpolant Z. So we can use this function in the equation (2.23)) and by ({2.27)), since Zvy,
belongs to V},, we got :

Lvavmh:L(ﬂAuh)wh + L Jnwp,

Eeg}
(2.28)
=J (f + Aup)v, + Z J Jnun,
{ Eegl E
for all v, in Vhf )
O

As we did for the residual a posteriori estimator, we will give the result of efficacity and
fiability of the BW estimator,

Theorem 6. [t exists a positive constant v < 1 which depends on the reqularity of the mesh,
on k the degree of polynomials in Vj, and on the choice of the interpolant Z but independant
of h such that,

(1872 |Vellg < (1 =) *Egw + C osc(f), (2.29)

and,
Epw < (14 C%) ||Vellg + Cosc(f), (2.30)

where Cx € [0;1] is a constant depending on another a posteriori error estimator from [3].

Note : We need to say few things about the different constants which appear in the previous
result :

e First, in the original paper [3] the autors build the fiability and efficiency of the BW
estimator on the equivalence between Ew and another a posteriori estimator which is
equivalent to the error. This is where the constant C; come from.

e Then we can notice that we did not specify the origin of the constant §. In fact, this
constant come from the crucial saturation assumption that we will describe in the next
chapter.

e Finally we can ask the question of the asymptotic exactness of the BW estimator, in
other words the fact of having }llirr(l) Epw = ||Vel|g. We could deduce this property from

the precedent Theorem, only if the constants (1 — 3?), (1 —~) and (1 + C%) tend to
1 when h go to zero. But as we said in the theorem, the constant v do not depends
on h. Then we can not deduce the asymptotic exactness of the BW estimator from
the previous result. However we can always hope that when h tends to zero, the BW
estimator get really close to the true error.
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Before talking of this assumption, we need to prove the slight changing we have made in
Theorem [6] with respect to the original result.

Proof. The proof of this result is given in [3] and applying it to the Poisson problem is
straight. We only exchange the second term of the right hand side in the original result
with the oscillations of f and we need to prove that we can do this exchange. The originals
inequations state as follow,

(1= 8% Vellg < (1 =) Epw + Co| Ve, Il

and,
Epw < (1+C%) [[Vellg + Co[[Vey, [lq ,

where ey, is the difference between the approximation w; and U which is the computed
approzimation of u, in other words in U we include all the approximations that the computer
need to do to approach u. In our case we will assume that U is the solution in V}, of the
following equation,

f VU - V’Uh = f fhvh, V’Uh € Vh, (2.31)
Q Q

where fj, is an approximation of f which belongs to V}.
So now, we need to prove the below inequality,

IVevllg = [V (un = U)|| < Cosc(f),
with a constant C' independ of h.

If we restrict the two equations ((1.5) and (2.31)) to a triangle 7" of the mesh and substract
them we get,

f V(up —U) -V, = f (f = fu)on
T T
Then, by Cauchy-Schwarz inequality,

| V=0 Vo<l = il ol (2.32)

By the norm equivalence in finite dimension and a scaling argument (Proposition , we have
the existence of a constant C' independant of h such that for every vy, in V},,

|l < Chy |[|Vop|| 4

Now if we take vy, = up, — U in the precedent inequation and in (2.32)) we get,

IV (un = U)II> < Che||f = full IV (up, = U]

Dividing by ||V (us — U)||, taking the square of the result and summing on all the triangles
of the mesh gives,
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2 IV =0z <€ 3 h2If = full-

TET, TET,
then,
1/2 1/2
<Z IV (un = U HT> (Z hy |lf - fh||T> :
TeTh TeTh

Finally if we take f;, which realize the oscillations of f,

IV (un = U)llg = [[Vev, || < Cosc(f).
O

2.3 About the saturation assumption of Bank and Weiser

The original paper [3] is mainly based on a conjecture called saturation assumption. In [3]
this assumption is given in the following form (with our notations),

Hypothesis 1. It exists 5 = f(h) a real valued function such that }llir%ﬁ = 0 and such that

we have the following boundary :

2
vw—u|| + 3 | [m2 o) < B IV (u— w)lf (2.33)

on
Eegl B

Then, the constant 5 of this assumption is the one used in Theorem [l The inequality of this
assumption means that the approximation of u by ui is better than that by w,. To clarify
this note we give a simpler form of the saturation assumption,

Hypothesis 2 (Saturation assumption). It ezists a« = a(h) a real valued function such that

]lln%a = 0 and such that we have the following boundary,

HV(u—uﬁ)HQ < al|V(u—up)llg - (2.34)

Proof. To replace the saturation assumption of Bank-Weiser by its simpler form we need to
prove that it exists a constant C' independant of h such that,

IS M < c|[veu- ug)H2 | (2.35)

on Q
Eeg} B
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We can prove this using the trace theorem, the Poincaré’s inequality and the propositions of
scaling. Let us start with T the reference triangle and @ a function of Hj(T). By Theorem
[1] we have,

D 2oy < C || g7 - (2.36)
Using Poincaré inequality of Proposition (1| on the right hand side gives a constant C' which
only depends on 7" such that,
D 207y < C @]y < C I V3|7

Concerning the left hand side of (2.36) we just need to use the inclusion H'(6T) « HY2(T)
which gives,

ow
— || < N0llgeer < ClIVsdllz.
‘ on 3l o7 o
Finally,
o
’ N <ovsallz. (2.37)
on gl o3

It remains to use the scaling propositions, Proposition [3| for the right hand side term and
Proposition [4] for the left hand side. Then, we get for T a triangle of the mesh and E an
edge which belongs to &' (N &L,

1/2

ow
r =l <ClVuwl||;. (2.38)

on || g

Now if we restrict (2.35) to an edge E of £ which is shared by the two triangles Ty and
Ty and detail the average in the left hand side we get,

12 ) O(u — u{l) 121 |[0(u — u{l) o(u — uﬁ)
hg =hg S||—"In+—"In,
on 2 on on
E E
Using triangular inequality and (2.38)) we get,
1||o(u—ul) ou —ul el (lo(u —ul) ou —ul
h1/2— h h <h /22 h h
E 2 an |T1 + an |T2 . E 2 an |T1 . an ‘T2 .

f

<C (HV(u — u{)’ " + HV(u —uy)

2

So,

oo

26
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and taking the square and using its convexity gives,

¥ 2
1/2 (9(u —uh) o f
h, {—an } ‘E <C (HV(U uy,

and if we sum over the interior edges,

1/2 (?(u—u£)
% (e

I
Eeg;

2

E

As we notice right below Theorem [6] this theorem is valid only under the saturation

assumption. A natural question arise :

When this assumption it is valid 7

Unfortunately, we can find very simple cases which not verify this assumption. Here is a

)

; + HV(u—u

f
h

< CHV(u—uf)H;.

)

2

T

)

particulary simple example, given in [7]. We consider the Poisson equation,

_Au:fu

with the Dirichlet boundary condition, on the domain 2 which is a square and on which we

define a very simple mesh as follow,

Then, we take the data f piecewise constant as follow,

f=-1

f=-1

Moreover if we take k = 1, in other words if u;, is a continuous piecewise linear approximation
of u and u£ a continuous piecewise quadratic approximation of u from the respective spaces

Vi, and Vhf , we have,

fqu:o, Vo e Vi, V.
Q
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And this implies,
Uy, = ui = 0.
Then as a result, in this case the equation ([2.34)) of the saturation assumption gives,

IVul| < af[Vall,

which is clearly false since a < 1.

The work of W.Dorfler and R.H.Nochetto [7] suggests that the failure of this assumption
is due to the too strong oscillations of the data f and to a too coarse mesh. In [7] they set
the following result which link the saturation assumption to the oscillations of f at the patch
level.

Theorem 7 ([7]). There exists a constant 0 < < 1 solely depending on shape reqularity of
the mesh, but independant of u and f, such that if,

oscon () < 1|V (u — un)lg
holds, then the saturation assumption (2.34)) is valid with o := (1 — p?)"/2,

In this theorem, the term of oscillations of f, namely oscpy(f) represent the oscillations
of f at the patch level. More precisely, for an interior node x of the mesh we denote

£, := meas(n,)"! f 7,
Nx

and
1/2

oscpn(f) = Z thf—fofh

1
zeN}/
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Chapter 3

Equivalence between residual and BW
estimators

In this chapter we will show a frame of the BW estimator with the residual estimator.
The final goal is to frame the error e with the BW estimator, using the results on residual
estimation and without any regularity hypothesis on the solution u, particulary without the
saturation hypothesis in [3].

3.1 Upper-bound

Let us begin with the following theorem which gives an upper-bound for E.. :

Theorem 8. There exists a positive constant C which depends only on the mesh reqularity
such that :
Epw < C(E%, + osc®(f))"2.

TeS

Proof. Let T be a triangle of the mesh 7,. Let us take v, = ¢ € V2(T) in the equation
(2.23), introduce f;, an approximation of the data f which belongs to V(T") and use the
Cauchy-Schwarz inequality :

Vel = [ G+ due 5 [ e+ [ (- se
T 2 oT T (3 1)

5 1 5 3
< || fn + Aupl|z| €] + §\|Jh|\aT||€HaT +[1f = fullzllé]|r.

Then by Poincaré’s inequality of Propositio (or by norm equivalence in finite dimen-
sion), we have for any vy, in V;9(T),

[0n]l7 < ClIV50][

with a constant C' independant of h. Then, by Proposition [3] for any triangle 7" of the mesh
if we take v, = v, o S,

vnllp < Chr ||Un]l7 < Chr ||[Vaillz < Che [| Vsl -
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So if we take v, = € we get,
lellr < Chr||Vel|r. (3.2)

By the Theorem |1| we have the existence of a constant C' such that for any vj, in Vho(f’),
[0n]]o7 < C HUhHHl v

and by Proposition [T,
||Uh”aT C|Vs|| 7 -
By Proposition [ for the left hand side and Proposition [3] for the right hand side,
—1/2
by onllor < O Vatnl |7

Finally if we take v, = é,
y 1/2 1w =
lellor < Chat® (Ve (3.3)

So, using and (| . in . get,
|Vellz < C(hTHfh + Auy||7|[Vellr + herllf = fullzl|Vellr + v/l | Jullor][Vellr),

If we divide by ||Vé||z we obtain :

|Veéllr <C <hT||fh + Aupl|r + hellf — fullr + v/ hT||Jh||aT> :

Now taking the square, using the convexity property and summing on the triangles of the
mesh gives :

2. IVelz < (Z |l fu + Aunllz + D hEllf = fall7 + ) hT”JhHaT)’
TeT, TeTh TeT), TeTy,

Finally, taking the square root, taking f;, which realize osc(f) and changing the last sum in
a sum over the edges gives :

Epw < C (EL + osc (f))l/Q.

res

3.2 Lower-bound

Before setting the lower-bound we need to give some recalls about Legendre polynomials (see
[6] Chap.4.7.8).

Definition 3 (Legendre polynomials). On the interval I = [—1;1] we define the n™ Legendre
polynomial as follow,

Pu(s) = 5o (2 = 1)) ™.

21|
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So defined, the family {P,}.ex is an orthogonal basis of L?*([—1;1]), we also have for any
n’

and since, P,(—s) = (—=1)"P,(s),
Po(=1) = (=1)".
Furthermore the first Legendre polynomials are given by,
1
Po(s) =1, Pi(s)=s, Ps)= 5(332 —1).

If E belongs to &, let us now denote (Pg, »)nen the family of Legendre polynomials scaled
to the edge F and if x and 2’ are the bounds of E we assume :

¢ Pp,.(z) =1and Pg,.(z) = (-1)",
. J PgyoPE1e = 0pny, for all n and [ in N,
E
where 9,,; is the Kronecker symbol.

We will change a little bit the family (Pg, »)nen and we define the polynomial Ly, , as :

PE,n,x + PE,n+1,:p

LE,mx = 9 )

such that :
e Lp,, belongs to P, (E),

¢ Lpn.(z)=1and Lg,.(z') =0 for all 2’ € N,

. J Lg,.q = 0 for all polynomial ¢ in P,,_;(E).
E

We also need the following definition, in the case of k = 1,

Definition 4. Let x be a mesh node in N;,. We construct a function v, associated to x such
that :

i) 1, belongs to Vhf,

ii) supp(¥y) = N,

iii) ¥, = Lg1, for any edge E touching x.

We also set QZO the function defined as above and associated to the node (0,0) on the reference
triangle T
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The above function v, is well defined. Indeed if £ = 1, the degrees of freedom of the
finite elements space Vhf (which is a space of quadratic polynomials) are the vertices and the
middle of each edge. To properly define ¢, on a triangle T" of 1, we just need to specify these
values in each degree of freedom, and this is done as we can see on the next figure,

T

7/)7*\;; = LE,l,.T
w.ﬂy = LE’,Lm
d).lt‘b-// = O

Since 1, is well defined on each triangle of 7., so it is on 7,.

Now we give the main result, namely the lower-bound of Egw by FEies,

Theorem 9. There exists a positive constant C only depending on the reqularity of the mesh,
such that :
Eres < C(Epw + osc(f)).

Proof. We only give the proof for linear finite elements (i.e. k=1).
We start by noticing that in this case since uy, is a piecewise linear polynomial, Awuy, = 0

and we have :
o o\ 1/2
h
Fres = (Z hTHthT+ Z hg H ﬂ > )
E

TeT, Ee&y
where f, is a piecewise polynomial approximation of f which belongs to the space V}’. Then
for k = 1, f, is piecewise constant on each triangle. So on a triangle 71" of the mesh we take
fn := fr the average of f on T, in other terms :

1
Jr = meas(7T) fo

Since Jj is a polynomial function in Py by definition of v, we have

I IR

Eegl

so if we take v, =1, € Vhf , (2.28) becomes :

LxVé-VId ~T)ib ff%
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Introducing f — f;, we get :
e = | ve-va-Du, ~ | (7= fen (3.4)
Nx Nx T

Let us deal with the left hand side. First, since f, is constant on each triangle we have
for each triangle T :

lly = | 7
= f7 meas(T),
50,
ol
T meas(T)1/?

Then, setting h, = rTnaX(hT), using a similar argument than in of Proposition |3| and using
€Nz
the local quasi-uniformity (1.4]) gives :

Lﬁfhwx -1 | fron

Teny

- Zfo%

Tens

_ [l
B Z meas(7T)1/2 JT ve

Tens

WV

|| fallr
Z Cmeas(T)1/2 J o

Tene

fulle o [~
Z Cmeas(n )1/2h ﬁwo

Tens

[l ha
Z Cmeaus(nx)l/2 52 J Yol -

Tens

\%

\%

Yet, by (L2) :

meas(n,)"? < h, card(n,) < heC5,

| = 3 clle g |

Teny

then
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and finally

Lw Tntbs

is only depending on d; of local quasi-uniformity of the mesh.

> C(0)ha Y. 1fall7. (3.5)

Teng

C ~
7 <2 Jl ¢O
Coo1 J7
Now we estimate the right hand side of (3.4)) using triangular inequality, Cauchy-Schwarz
and since 9, belongs to Vhf , Theorem :

L Ve V(1d-T) - [ o=

Nz

HIf = Sullne 1],

< Cllalln, (h I VElly,

(3.6)
HIT = Bill)
< C [, (a1 elly.
HIT = fall)

If we gather (3.5)) and (3.6) we obtain :

hall fulln, < C(IIVelly, + hallf = falln.)

where C' depends on the interpolation operator Z and on the regularity of the mesh but is
independant of h.

Taking the square, using its convexity and summing on all nodes of the mesh get :

MURAIE < ) (Ve +R2(1f = fulls,). (3.7)

zeN}, zeN},

Now notice that every triangle of the mesh is counted three times when we sum over all
the nodes. Then if we change the sums over nodes into sums over triangles we obtain on one
hand :

SRSl =3 ) hillfall3 (3.8)

xeN}, TeTh,

And on the other hand, using the local quasi-uniformity of the mesh (1.4)) we have for
any function v in H}(Q),
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DSR2Vl = Y > R2|Voll7

zeNy, xeN}, Tens

=), ), hlvalz

TeTn © s.t Ten,

<) 2 oinrl|Vall

TeTy, x s.t. Teny

< ). 30thE ||Vl

TeT,

Applying this in the following sum we get,

c(z VR + 3 hinffhna) <3c<2 Ve + 8 Y h%nffh@)

zeN zeN TeTh, TeTh
(3.9)
<3C ( Z (||Ve||%) + 62 osc2(f)> )
TeTh
Then combining (3.7)), (3.8) and (3.9) we finally get :
PNATAEYE (Z (IIvellz) + oF 0302(]”)) : (3.10)
TeTh TeTh

with a constant C' only depending on Z and on d; of the local quasi-uniformity.

It remains now to bound the terms in F,. containing the jumps J,. This proof can be
done in the same way for any £ € N but is based on the previous step. Consider also bg
the usual bubble function defined in Definition [2] Let us set the following application for an
integer [,

P\(E) — Py(E)
P Phg>

this application maps a polynomial defined on E to its restriction to E. Since this application
is a surjection, we can extend any polynomial g, in P;(E) to a polynomial of P;(F ) So lets
extend J, from F to E by a polynomial still denoted by Jh Since J;, belongs to Py 1(E)

and bg belongs to IP’Q(E) we have that J,bg belongs to Vh (E) Now if we set v, = Jpbg In
(12.25) we get :

f Jibp =ﬁ Ve - V(Id ~I)Jybg _ﬁ rJnbg.
E E

B
By Cauchy-Schwarz and Theorem [2 :

| gtbe < (curiivelle + i) 140
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By shape regularity of the mesh, it exists a constant C' only depending on ¢y such that :
- -1
hz' < Chy',

then :
| b < (CoonTellz + i) bl

Moreover, by Proposition [7] we have

J Jp < CJ Jibg,
E E

| < et vels + illg) el e

then :

Also by Proposition [7] we get
1/2
bl < Chig? | |-

So, using this last inequality and multiplying by h}f gives :
1/2 .
b |t < O (IVells + hsllrlle) 1l

Dividing by ||/x|| g, taking the square and using its convexity :
el < O (|[Vell% + hglirl) -

And if we sum over all edges of the mesh and changes the sums of the right hand side into
sums on triangles we get :

>, hell il < 3C (Z Vel + ), h%HTH%) : (3.11)

Ee&y, TeTh TeTh,

Now by choosing f;, such that osc(f) is realised, by triangular inequality and by convexity
of the square we have :

D hEllf + AullF <2 (Z Wl fo + Aup|[+ D Wl f - th2T>

TeT, TeT, TeTy,
(3.12)

<2 (Z R\ fr + Aup| 5 + osc(f)2> :

TeT,

And for bound the term Y} - h7[|fu + Auyl|7 we can use (3.10) (for the case k& = 1) and
we get :

D13+ A} < C (Z Vel + OSC(f)2> : (3.13)

TeT), TeTh
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Then combining (3.11)), (3.12) and (3.13]) we obtain :
> ||l < C (Z Vel + 0sc(f)2> , (3.14)
Ee&y, TeTh

where C' depends on the interpolant Z and on the mesh regularity but does not depend on h.
Finally, combining and (3.10)), taking the square root and using convexity of the square
gives the result :

1/2
. 1/2
(Z nallrllz + ) hE||Jh||2E) < O (|vel|g +osc*(f)) 7,

TeT, FEe&y,

with a constant C' which depends only on the mesh regularity and the interpolant Z.
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Chapter 4

Conclusion and opening

The main idea of this work was to maintain a frame as general as possible concerning the
regularity of the solution u to show that the a posteriori error estimator of Bank-Weiser has
good properties of convergence even when the problem concerned admits a singuliar solution.

The first step was to do whithout the saturation assumption which exclude this kind of
problems. The next step is naturally to generalize the result of the lower-bound to finite
elements spaces of higher order polynomials.

In parallel, a numerical study of the BW estimator on test problems which admit singuliar
solutions (like on a "L" domain or on a slit square) could be give an idea of the efficiency
and the behavior of this estimator.

Another way to study the convergence properties of BW estimator would be through
its asymptotic exactness. The asymptotic exactness of BW estimator is not guaranteed ac-
cording to the present constants which appear in the estimations of Theorem [6] However,
in their work [8], R.Duran and R.Rodriguez have already proved that for problems which
admit reguliar solutions (H?) and for particulary reguliar meshes (parallel meshes) the BW
estimator is asymptotically exact.
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