An a Posteriori Error Estimator for the Spectral Fractional Power of the Laplacian

Raphaël Bulle^{1 3} Olga Barrera² Stéphane P. A. Bordas³ Franz Chouly^{4 5} Jack S. Hale³

¹Université Laval, QC

²University of Oxford, UK

³University of Luxembourg, Luxembourg

⁴University of Burgundy, France

⁵University of Chile, Chile

June 6, 2023

Outline

Contributions

Problem setting

Discretization

Rational approximation Finite element method

Error estimation

Rational approximation Finite element approximation

Adaptive refinement and numerical results Mesh refinement Rational scheme adaptation

Outline

Contributions

Problem setting

Discretization

Rational approximation Finite element method

Error estimation

Rational approximation Finite element approximation

Adaptive refinement and numerical results Mesh refinement Rational scheme adaptation

Contributions

Bulle, R., Barrera, O., Bordas, S. P. A., Chouly, F., and Hale, J. S. (2023a). An a posteriori error estimator for the spectral fractional power of the Laplacian. *Computer Methods in Applied Mechanics and Engineering*, 407:115943.

Contributions:

- A novel a posteriori error estimator of the FE error in the discretization of the fractional Laplacian.
- An algorithm combining FE mesh refinement and rational scheme adaptation.
- Implementation in FEniCSx.

Outline

Contributions

Problem setting

Discretization

Rational approximation Finite element method

Error estimation

Rational approximation Finite element approximation

Adaptive refinement and numerical results Mesh refinement Rational scheme adaptation

Problem setting

Let $\Omega \subset \mathbb{R}^d$ for d = 2, 3, a bounded open domain with polygonal/polyhedral boundary, $s \in (0, 1)$ and

$$(-\Delta)^s u = f \text{ in } \Omega, \qquad u = 0 \text{ on } \partial\Omega.$$
 (1)

We consider the *spectral* definition of the fractional Laplacian, the solution to eq. (1) reads $u = \sum_{i=1}^{+\infty} \lambda_i^{-s} (f, \psi_i)_{L^2} \psi_i.$

where $\{(\lambda_i, \psi_i)\}_{i=1}^{+\infty} \subset \mathbb{R}^{+,*} \times L^2(\Omega)$ is the spectrum of $-\Delta$ over Ω with homogeneous zero Dirichlet boundary conditions.

Outline

Contributions

Problem setting

Discretization Rational approximation Finite element method

Error estimation Rational approximation Finite element approximation

Adaptive refinement and numerical results Mesh refinement Rational scheme adaptation

Let us consider the following rational function defined $\forall \lambda \in \mathbb{R}^{+*}$

$$\mathcal{Q}_s^N(\lambda) := C_1 + C_2 \sum_{l=1}^N a_l (b_l + c_l \lambda)^{-1},$$

where $C_1, C_2, (a_l)_l, (b_l)_l$ and $(c_l)_l$ are well-chosen real numbers such that $\forall s \in (0, 1)$ and $\forall \lambda \ge \lambda_0 > 0$,

$$|\lambda^{-s} - \mathcal{Q}_s^N(\lambda)| \leqslant \varepsilon(\lambda_0, s, N) \xrightarrow[N \to +\infty]{} 0$$

$$\mathcal{Q}_s^N(\lambda) := C_1 + C_2 \sum_{l=1}^N a_l (b_l + c_l \lambda)^{-1},$$

Many such rational functions are available in the litterature. We can cite:

- BURA methods¹ [Harizanov et al., 2020],
- integral representation methods¹ [Bonito and Pasciak, 2015],
- Dirichlet-to-Neumann mappings [Chen et al., 2015],
- time stepping methods [Vabishchevich, 2015].

More details about these schemes can be found in [Hofreither, 2020].

¹For these methods $\varepsilon(\lambda_0, s, N)$ converges to zero exponentially fast.

Replacing λ_i^{-s} by its rational approximation we have

$$\begin{split} u &= \sum_{i=1}^{+\infty} \lambda_i^{-s} (f, \psi_i)_{L^2} \psi_i \\ &\simeq \sum_{i=1}^{+\infty} \mathcal{Q}_s^N(\lambda_i) (f_i, \psi_i)_{L^2(\Omega)} \psi_i \\ &\simeq C_1 \sum_{i=1}^{+\infty} (f_i, \psi_i)_{L^2(\Omega)} \psi_i \\ &\simeq C_1 f + C_2 \sum_{l=1}^{N} a_l \left(\sum_{i=1}^{+\infty} (b_l + c_l \lambda_i)^{-1} (f_i, \psi_i)_{L^2(\Omega)} \psi_i \right) \\ &\simeq C_1 f + C_2 \sum_{l=1}^{N} a_l u_l, \end{split}$$

where $(u_l)_l \subset H^1_0(\Omega)$ are solutions to

$$b_l \int_{\Omega} u_l v + c_l \int_{\Omega} \nabla u_l \cdot \nabla v = \int_{\Omega} f v \qquad \forall v \in H^1_0(\Omega).$$

$$u \simeq u_N := C_1 f + C_2 \sum_{l=1}^N a_l u_l.$$

The function u_N is not a discrete function.

In order to obtain a fully discrete approximation to u we use a finite element method to discretize the functions $(u_l)_l$ and f.

Discretization: Finite element method

Let \mathcal{T} be a mesh over Ω , $p \in \mathbb{N}$ and V_p be the continuous Lagrange finite element space of degree p associated to \mathcal{T} .

We consider the finite element approximations $(u_{l,p})_l$, solutions to

$$b_l \int_{\Omega} u_{l,p} v_p + c_l \int_{\Omega} \nabla u_{l,p} \cdot \nabla v_p = \int_{\Omega} f v_p \qquad \forall v_p \in V_p.$$

Then,

$$u \simeq u_N := C_1 f + C_2 \sum_{l=1}^N a_l u_l \simeq u_{N,p} := C_1 f_p + C_2 \sum_{l=1}^N a_l u_{l,p},$$

Rational approximation Finite element approximation

where f_p is the L^2 projection of f onto V_p .

Outline

Contributions

Problem setting

Discretization Rational approximation Finite element method

Error estimation Rational approximation Finite element approximation

Adaptive refinement and numerical results Mesh refinement Rational scheme adaptation

Error estimation

How can we control the discretization(s) error(s)?

Using the triangle inequalities we have

$$\|u - u_{N,p}\|_{L^{2}(\Omega)} \leq \|u - u_{N}\|_{L^{2}(\Omega)} + \|u_{N} - u_{N,p}\|_{L^{2}(\Omega)},$$

and

$$\left| \left\| u - u_N \right\|_{L^2(\Omega)} - \left\| u_N - u_{N,p} \right\|_{L^2(\Omega)} \right| \leq \| u - u_{N,p} \|_{L^2(\Omega)},$$

where

- $||u u_N||_{L^2(\Omega)}$ is the rational approximation error,
- $||u_N u_{N,p}||_{L^2(\Omega)}$ is the finite element approximation error.

Error estimation: Rational approximation

The rational error can be reduced to a 1D scalar function approximation error. If $\forall i \in \mathbb{N}^* \ \lambda_i \ge \lambda_0$,

$$\|u-u_N\|_{L^2(\Omega)} \leqslant \max_{\lambda \geqslant \lambda_0} (\lambda^{-s} - \mathcal{Q}_s^N(\lambda)) \|f\|_{L^2(\Omega)}.$$

In practice, for certain schemes this maximum is reached for λ close to λ_0 , thus computing an approximation η_N^{ra} of $\max_{\lambda \ge \lambda_0} (\lambda^{-s} - \mathcal{Q}_s^N(\lambda)) ||f||_{L^2(\Omega)}$ is an easy task compared to the finite element error approximation.

$$(-\Delta)^{s} u = f \qquad \longrightarrow \qquad \begin{array}{c} b_{1} \int_{\Omega} u_{1,p} v_{p} + c_{1} \int_{\Omega} \nabla u_{1,p} \cdot \nabla v_{p} = \int_{\Omega} f v_{p} \qquad \longrightarrow \qquad \text{Error estimator} \\ & & \cdots \\ & & & \\ b_{N} \int_{\Omega} u_{N,p} v_{p} + c_{N} \int_{\Omega} \nabla u_{N,p} \cdot \nabla v_{p} = \int_{\Omega} f v_{p} \qquad \longrightarrow \qquad \text{Error estimator} \end{array}$$

By linearity we have,

$$u_{N|T} - u_{N,p|T} = C_1(f_{|T} - f_{p|T}) + C_2 \sum_{l=1}^{N} a_l(u_{l|T} - u_{l,p|T}).$$

We are looking for computable local functions h_T and $e_{l,T}^{bw}$ such that for each $T \in \mathcal{T}$,

$$u_{N|T} - u_{N,p|T} \simeq C_1 h_T + C_2 \sum_{l=1}^N a_l e_{l,T}^{\text{bw}}.$$

For example, we can consider $h_T := f_{p+1|T} - f_{p|T}$, where f_{p+1} is the L^2 projection of f onto V_{p+1} .

We need an error estimation method that computes the local functions $e_{l,T}^{\text{bw}}$. We use the hierarchical a posteriori error estimation method derived in [Bank and Weiser, 1985].

First, we notice that the functions $u_l - u_{l,p}$ satisfy the following equation

$$b_l \int_{\Omega} (u_l - u_{l,p}) v + c_l \int_{\Omega} \nabla (u_l - u_{l,p}) \cdot \nabla v = \sum_{T \in \mathcal{T}} R_T(v_{|T}) \quad \forall v \in H^1_0(\Omega),$$

where R_T is a linear form that depends on $u_{l,p}$ but *not on* u_l . The idea behind Bank-Weiser error estimation is to localize and discretize the previous equation into

$$b_l \int_{T} e_{l,T}^{\mathrm{bw}} v_T^{\mathrm{bw}} + c_l \int_{T} \nabla e_{l,T}^{\mathrm{bw}} \cdot \nabla v_T^{\mathrm{bw}} = R_T(v_T^{\mathrm{bw}}) \quad \forall v_T^{\mathrm{bw}} \in V^{\mathrm{bw}}(T)$$

If $\mathcal{I}_T : V_{p+1}(T) \longrightarrow V_p(T)$ is the local Lagrange interpolation operator, then the Bank-Weiser space is defined as

$$V^{\mathrm{bw}}(T) := \left\{ v_{p+1,T} \in V_{p+1}(T), \ \mathcal{I}(v_{p+1,T}) = 0 \right\} = \ker(\mathcal{I}_T).$$

Then, the local fractional a posteriori error estimator is given by

$$\|u_{N|T} - u_{N,p|T}\|_{L^{2}(T)} \simeq \eta_{N,T}^{\mathrm{bw}} := \left\|C_{1}h_{T} + C_{2}\sum_{l=1}^{N} a_{l}e_{l,T}^{\mathrm{bw}}\right\|_{L^{2}(T)},$$

and the corresponding global estimator is given by

$$\|u_N - u_{N,p}\|_{L^2(\Omega)}^2 \simeq \eta_N^{\mathrm{bw}^2} := \sum_{T \in \mathcal{T}} {\eta_{N,T}^{\mathrm{bw}^2}}.$$

Error estimation

To summarize,

	Rational scheme	FE method			
Exact errors	$\ u-u_N\ _{L^2(\Omega)}$	$\ u_N-u_{N,p}\ _{L^2(\Omega)}$			
Estimators	$\eta_N^{ m ra}$ Approx. of the max of a 1D function	η_N^{bw} Hierarchical error estimator of Bank–Weiser type			
Properties	"Easily" computable	Fully local and computable in parallel wrt <i>l</i> and <i>T</i> .			

Outline

Contributions

Problem setting

Discretization

Rational approximation Finite element method

Error estimation Rational approximation Finite element approximation

Adaptive refinement and numerical results Mesh refinement Rational scheme adaptation

Adaptive refinement and numerical results: Mesh refinement

We can use the Bank-Weiser error estimator to drive an adaptive mesh refinement algorithm.

 $\cdots \longrightarrow \operatorname{Solve} \longrightarrow \operatorname{Estimate} \longrightarrow \operatorname{Mark} \longrightarrow \operatorname{Refine} \longrightarrow \cdots$

When the rational scheme is not adapted, we assume that N is large enough so that the rational error can be neglected. Rational schemes tested:

- BP (Bonito-Pasciak) [Bonito and Pasciak, 2015].
- BURA (with baryrat¹) [Harizanov et al., 2020, Hofreither, 2021].

The numerical results are obtained using the FEniCSx software [Alnæs et al., 2015] and our FEniCSx library² [Bulle et al., 2023b]. A minimal example code is available here³.

¹https://github.com/c-f-h/baryrat

²https://github.com/jhale/fenicsx-error-estimation

³https://figshare.com/articles/software/Example_of_a_posteriori_error_estimation_of_fractional_partial_differential_ equation_in_FEniCSx_Error_Estimation_FEniCSx-EE_/19086695/3

Adaptive refinement and numerical results: Mesh refinement

```
Choose a tolerance tol > 0, an initial mesh \mathcal{T}_{n=0} and a rational scheme \mathcal{Q}_s^N s.t. \|u - u_N\|_{L^2} \ll \text{tol.}
Generate \mathcal{Q}^N_{\circ} coefficients
while \eta_{M}^{\rm bw} > {\rm tol } \mathbf{do} (Refinement loop)
     for l \in [1, N] do (Rational scheme loop)
          Compute u_{l,n} on \mathcal{T}_n
          Add a_l u_{l,p} to u_{N,p}
          for T \in \mathcal{T}_n do (Local FE error estimation loop)
               Compute e_{l,T}^{\rm bw}
               Add a_l e_{l,T}^{bw} to e_{N,T}^{bw}
          end for
     end for
     Multiply u_{N,p} and e_{N,T}^{bw} by C_2
     Compute f_{V^p} the L^2 projection of f onto V^p and add C_1 f_{V^p} to u_{\mathcal{O}_{u,p}}
     Compute f_{VP+1} the L^2 projection of f onto V^{p+1} and add C_1(f_{VP+1} - f_{VP})|_T
     Compute \eta_{N,T}^{\mathrm{bw}} := \|e_{N,T}^{\mathrm{bw}}\|_{L^2(T)} for all T \in \mathcal{T}_n and \eta_N^{\mathrm{bw}} := \sqrt{\sum_T {\eta_{N,T}^{\mathrm{bw}}}^2}
     if \eta_N^{\rm bw} < \text{tol then}
          Return u_{N,p}
     else
          Mark the mesh \mathcal{T}_n using \{\eta_{NT}^{\mathrm{bw}}\}_T
          Refine the mesh \mathcal{T}_n to obtain \mathcal{T}_{n+1}
     end if
end while
```

Adaptive refinement and numerical results: Mesh refinement ^{2D} problem with analytical solution

 $(-\Delta)^{s}u = fin [0,\pi]^{2}, u = 0 \text{ on } \Gamma, \text{ with } f(x,y) = (2/\pi) \sin(x) \sin(y).$ Exact solution $u(x,y) = 2^{-s} f(x,y).$

Solid line: Bank-Weiser estimator, dashed line: exact error.

Adaptive refinement and numerical results: Mesh refinement

2D checkerboard problem

 $(-\Delta)^s u = f$, in $[0, 1]^2$, u = 0, on Γ , with f(x, y) = 1 in $[0, 0.5]^2 \cup [0.5, 1]^2$, -1 otherwise. Initial mesh 4×4 .

Meshes after 10 adaptive refinement steps.

Adaptive refinement and numerical results: Mesh refinement 2D checkerboard problem

BP rational scheme. Solid lines: BW estimator, adaptive ref. Dashed lines: BW estimator, uniform ref. 27/37

Adaptive refinement and numerical results: Mesh refinement 3D checkerboard problem (BP scheme)

 $(-\Delta)^{s}u = f$, in $[0, 1]^{3}$, u = 0, on Γ .

Light lines: BW estimator, uniform ref. Dark lines: BW estimator, adaptive ref.

Adaptive refinement and numerical results: Rational scheme adaptation Using an overly refined rational scheme is a waste of computational resources... Is it possible to even the FE and rational discretization errors ?

 $\cdots \longrightarrow \text{Solve} \longrightarrow \text{Estimate} \longrightarrow \text{Mark} \longrightarrow \text{Refine} \longrightarrow \text{Adapt ra. sch.} \longrightarrow \cdots$

At step m of refinement, we need to guess what will be the $m + 1^{\text{th}}$ value of η^{bw} and try to match this value with η^{ra} .

Adaptive refinement and numerical results: Rational scheme adaptation

2D problem with analytical solution

	Frac. power	0.1	0.3	0.5	0.7	0.9	
BP	Fixed ra. scheme Adaptive ra. scheme	1155 504	497 209	427 178	497 199	1155 358	
BURA	Fixed ra. scheme	96	77	63	49	35	
	Adaptive ra. scheme	42	33	29	20	17	
	Tatal mumah ay of mayons at it a much lance call use						

Total number of parametric problems solves.

Adaptive refinement and numerical results: Rational scheme adaptation 2D problem with analytical solution

Solid lines: fixed rational scheme, dashed lines: adaptive rational scheme.

Adaptive refinement and numerical results: Rational scheme adaptation 2D checkerboard problem

Dark blue lines: uniform mesh ref. & fixed rational scheme, medium blue lines: adaptive mesh ref. & fixed rational scheme, light blue lines: adaptive mesh ref. & adaptive rational scheme.

Outline

Contributions

Problem setting

Discretization

Rational approximation Finite element method

Error estimation

Rational approximation Finite element approximation

Adaptive refinement and numerical results Mesh refinement Rational scheme adaptation

- Improve the mesh refinement method (e.g. multi-mesh, anisotropic refinement).
- Try other hierarchical a posteriori error estimators (following e.g. [Zhang and Naga, 2002]).
- Derive an estimator for the fractional Sobolev norm.
- Adapt the method to other fractional Laplacian definitions (e.g. integral Laplacian, following [Bonito et al., 2019]).

Thank you for your attention!

I would like to acknowledge the support of the ASSIST research project of the University of Luxembourg. This work has been prepared in the framework of the DRIVEN project funded by the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No. 811099.

References I

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N. (2015).

The {FEniCS} {Project} {Version} 1.5. Archive of Numerical Software, 3(100).

Bank, R. E. and Weiser, A. (1985).

Some A Posteriori Error Estimators for Elliptic Partial Differential Equations. Mathematics of Computation, 44(170):283.

Bonito, A., Lei, W., and Pasciak, J. E. (2019).

Numerical approximation of the integral fractional Laplacian. *Numerische Mathematik*, 142(2):235–278.

Bonito, A. and Pasciak, J. E. (2015).

Numerical approximation of fractional powers of elliptic operators. Mathematics of Computation, 84(295):2083–2110.

Bulle, R., Barrera, O., Bordas, S. P. A., Chouly, F., and Hale, J. S. (2023a).

An a posteriori error estimator for the spectral fractional power of the Laplacian. Computer Methods in Applied Mechanics and Engineering, 407:115943.

Bulle, R., Hale, J. S., Lozinski, A., Bordas, S. P. A., and Chouly, F. (2023b). Hierarchical a posteriori error estimation of Bank–Weiser type in the FEniCS Project. *Computers & Mathematics with Applications*, 131:103–123.

Chen, L., Nochetto, R. H., Otárola, E., and Salgado, A. J. (2015).

A PDE approach to fractional diffusion: A posteriori error analysis. Journal of Computational Physics, 293:339–358.

References II

Harizanov, S., Lazarov, R., Margenov, S., and Marinov, P. (2020).

Numerical solution of fractional diffusion–reaction problems based on BURA. *Computers & Mathematics with Applications*, 80(2):316–331.

Hofreither, C. (2020).

A unified view of some numerical methods for fractional diffusion. Computers & Mathematics with Applications, 80(2):332–350.

Hofreither, C. (2021).

An algorithm for best rational approximation based on barycentric rational interpolation. *Numerical Algorithms*, 88(1):365–388.

Vabishchevich, P. N. (2015).

Numerically solving an equation for fractional powers of elliptic operators. *Journal of Computational Physics*, 282:289–302.

Zhang, Z. and Naga, A. (2002).

A Meshless Gradient Recovery Method Part I: Superconvergence Property. Mathematics Research Reports.