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A finite element method
Example of elliptic PDE

Let γ ∈ R+,∗ and f ∈ L2(Ω). We are looking for u (with sufficient

regularity) such that

u− γ∆u = f in Ω

u = 0 on Γ,

where ∆u(x1, x2) := (∂2
xx + ∂2

yy)u.
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A finite element method
Example of elliptic PDE

Instead of looking at the strong formulation: find u satisfying

u− γ∆u = f in Ω

u = 0 on Γ,

we consider the weak formulation: find a function u in H1
0 (Ω)

such that∫
Ω

uv + γ

∫
Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω),

where H1
0 (Ω) is the Sobolev space of functions v in L2(Ω) vanishing on Γ

and with ∂xv and ∂yv in L2(Ω).
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A finite element method
Discretization

Goal: Compute a numerical approximation to u,
solution to∫

Ω

uv + γ

∫
Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω).
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A finite element method
Discretization

Let T = {T} be a mesh on Ω, of edges
E = {E}.

We consider V 1 ⊂ H1
0 (Ω) the space

of continuous piecewise linear polynomial
functions over T , vanishing on Γ.

Let u1 ∈ V 1 be the solution to∫
Ω

u1v1 + γ

∫
Ω

∇u1 · ∇v1 =
∫
Ω

fv1 ∀v1 ∈ V 1.
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A finite element method
Discretization

Original problem:∫
Ω

uv + γ

∫
Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω).

Linear Lagrange finite element discretization:∫
Ω

u1v1 + γ

∫
Ω

∇u1 · ∇v1 =
∫
Ω

fv1 ∀v1 ∈ V 1.

We take u1 ≈ u.
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A finite element method
Discretization

Let’s try it out!

We take γ = 1, f = 1 and solve∫
Ω

u1v1 +

∫
Ω

∇u1 · ∇v1 =
∫
Ω

fv1 ∀v1 ∈ V 1.
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A finite element method
Discretization

Let’s try it out!
We take γ = 1, f = 1 and solve∫

Ω

u1v1 +

∫
Ω

∇u1 · ∇v1 =
∫
Ω

fv1 ∀v1 ∈ V 1.

(Linear system dimension: 66049.)
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Error estimation
A priori error estimation

What can we say about the discretization error ?

We quantify the error e := u− u1 using the energy norm

∥e∥γ :=

(∫
Ω

e2 + γ

∫
Ω

∇e · ∇e

)1/2

.
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Error estimation
A priori error estimation

What can we say about the discretization error ?
We quantify the error e := u− u1 using the energy norm

∥e∥γ :=

(∫
Ω

e2 + γ

∫
Ω

∇e · ∇e

)1/2

.

A priori error estimation
Let Ω be an open subset of R2 of polygonal boundary and let {Th}h>0

be a shape-regular family of conformal meshes of Ω. Then,

lim
h!0

∥e∥γ = 0.

Moreover, if u ∈ H2(Ω) there exists cγ such that

∥e∥γ ⩽ cγh|u|H2 .

H2(Ω) :=
{
v ∈ L2(Ω), ∂αu ∈ L2(Ω), α ∈ N2, |α| ⩽ 2

}
is an Hilbert space on which

we define the semi-norm, |u|2
H2 := ∥∂2xxu∥2L2 + ∥∂2yyu∥2L2 + ∥∂2xyu∥2L2 .
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Error estimation
A priori error estimation

What can we say about the discretization error ?
We quantify the error e := u− u1 using the energy norm

∥e∥γ :=

(∫
Ω

e2 + γ

∫
Ω

∇e · ∇e

)1/2

.

A priori error estimation
∥e∥γ ⩽ cγh

1|u|H2 .

10 210 1

h

10 2

10 1

1

1

= 1
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Error estimation
What happened ?

A priori error estimation
∥e∥γ ⩽ cγh|u|H2 .

The solution u does not belong to
H2(Ω)!
∇u admits a singularity in the reen-
trant corner of Ω [Grisvard, 1986].
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Error estimation
A posteriori error estimation

• How to deal with solutions having local features ?

• How to quantify the discretization error ?
• How to choose the size of the mesh to reach a certain

tolerance ?

A priori error estimation A posteriori error estimation

∥e∥γ ⩽ C̃(u) ∥e∥γ ≈ η

C̃(u) is unknown. η is known.
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Error estimation
A posteriori error estimation

Let η be an a posteriori error estimator. We would like η to be:
• computable from problem data (f , boundary conditions data...)

and u1 only,

• reliable i.e. there exists a constant C only depending on the mesh
regularity such that

∥e∥γ ⩽ Cη with C close to 1,

• efficient i.e. there exists a constant c only depending on the mesh
regularity such that

cη ⩽ ∥e∥γ with c close to 1,

• local i.e.
η =

∑
T∈T

ηT ,

• cheap to compute, ideally much less expensive than computing u1.
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Error estimation
A posteriori error estimation

Let e := u − u1, we can show that e is solution to the local
problem:∫
T

evT + γ

∫
T

∇e · ∇vT =

∫
T

rγ,T vT +
∑

E∈∂T

∫
E

Jγ,EvT ∀vT ∈ H1
0 (T ),

with rγ,T := (f − u1 + γ∆u1)|T and Jγ,E := γ

s
∂u1

∂n

{
E

.

We consider V bw(T ) ⊂ V 2(T ) a particular local finite element
space.
For a cell T in T , we define ebwT ∈ V bw(T ) the solution to∫
T

ebwT vT+γ

∫
T

∇ebwT ·∇vT =

∫
T

rγ,T vT+
∑

E∈∂T

∫
E

Jγ,EvT ∀vT ∈ V bw(T ),
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Error estimation
A posteriori error estimation

The local Bank-Weiser a posteriori error estimator [Bank, Weiser, 1985]

is defined by:
ηT := ∥ebwT ∥γ,

and the global estimator by:

η2bw :=
∑
T∈T

η2T .
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Error estimation
A posteriori error estimation

Is the Bank-Weiser estimator a good estimator ?
• computable from data and u1 only: ✓

• reliable (∥e∥γ ⩽ Cηbw):

▶ ✓ under a constraining assumption on the solution u
[Bank, Weiser, 1985],

▶ ✓ without the assumption, for linear finite elements in 1D and 2D
[Nochetto, 1993],

▶ ✓ without the assumption, for linear finite elements in 3D
[B., Chouly, Hale, Lozinski, 2019],

▶ 7 still an open problem for higher order finite elements.

• efficient (cηbw ⩽ ∥e∥γ): ✓ [Bank, Weiser, 1985],
• local: ✓
• cheap: ✓ [Bordas, B., Chouly, Hale, Lozinski, 2020].
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Numerical results
Let’s try it out!

Adaptive refinement algorithm:
1. fix a tolerance ε and pick an initial (coarse) mesh Tl

(l = 0),

2. solve the PDE to get ul1 on Tl,
3. Loop over the cells T of Tl:

▶ solve the BW equation on T ,
▶ compute the local estimator ηT ,

4. compute the global estimator ηbw and check if ηbw ⩽ ε,

▶ ✓ stop the algorithm and return ul1.
▶ 7 continue,

5. mark the cells we need to refine (e.g. each cell T for which
ηT ⩾ 0.9max

T∈Tl

ηT ),
6. refine the mesh Tl into a new mesh Tl+1,
7. go back to 2. replacing l by l + 1.
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Numerical results
Let’s try it out!

102 103 104 105

dofs

10 2

10 1

2

-1

Uniform vs adaptive refinement = 1
Exact error (unif. refinement)
Estimator (adapt. refinement)
Exact error (adapt. refinement)
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Numerical results
Let’s try it out!

Uniform refinement:
Initial mesh

Exact error ≈ 0.2210
Linear system dim. = 25

Adaptive refinement:
Initial mesh

Exact error ≈ 0.2210
Linear system dim. = 25
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Numerical results
Let’s try it out!

Uniform refinement:
3rd mesh

Exact error ≈ 0.0371
Linear system dim. = 1089

Adaptive refinement:
6th mesh

Exact error ≈ 0.0372
Linear system dim. = 757
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Numerical results
Let’s try it out!

Uniform refinement:
6th mesh

Exact error ≈ 0.0076
Linear system dim. = 66049

Adaptive refinement:
11th mesh

Exact error ≈ 0.0081
Linear system dim. = 15429
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Application to a fractional Laplacian problem
The spectral fractional Laplacian

Let α ∈ (0, 2) and f ∈ L2(Ω), we are looking for u ∈ L2(Ω)
(with sufficient regularity) such that

(−∆)α/2u = f in Ω,

u = 0 on Γ.

How is the function u defined ?
Let L be the Laplace-Dirichlet operator on Ω such that Lw = f
if w is the solution of

−∆w = f in Ω,

w = 0 on Γ.

We consider the weak formulation: w in H1
0 (Ω) is solution to∫

Ω

∇w · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω).
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Application to a fractional Laplacian problem
The spectral fractional Laplacian

The eigenfunctions {ψj}∞j=1 of L form a basis of L2(Ω).

f =
∞∑
j=1

fjψj,

with fj :=
∫
Ω fψj for j = 1, · · · ,∞.

If {λj}∞j=1 are the corresponding eigenvalues, we define the so-
lution u as follow:

u = (−∆)−α/2f = L−α/2f :=
∞∑
j=1

λ
−α/2
j fjψj.
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Application to a fractional Laplacian problem
How to compute the solution numerically ?

There are many ways to compute a numercial approximation to
the solution u e.g.

• using spectral method [Song, Xu, Karniadakis, 2017],
• using Euler’s reflection formula [Bonito, Pasciak, 2013],
• using Cauchy’s integral formula

[Gavrilyuk, Hackbusch, Khoromskij, 2004] [Bonito, Lei, Pasciak, 2016],
• using polynomial interpolation...
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How to compute the solution numerically ?
Euler’s reflection formula

π

sin(πθ)
=

∫ +∞

0

tθ−1(1 + t)−1 dt ∀θ ∈ (0, 1).

Some tweaks lead to

sθ−1 = cθ

∫ +∞

0

tθ−1(s+ t)−1 dt ∀s > 0 and ∀θ ∈ (0, 1),

with cθ =
sin(πθ)

π
.

Then, for θ − 1 = −α/2 ∈ (−1, 0) and s = λj, j ∈ J1,+∞J,
λ
−α/2
j = cα

∫ +∞

0

t−α/2(λj + t)−1 dt.
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How to compute the solution numerically ?
Euler’s reflection formula

λ
−α/2
j = cα

∫ +∞

0

t−α/2(λj + t)−1 dt.

Then,

L−α/2f =
∞∑
j=1

λ
−α/2
j fjψj

=
∞∑
j=1

cα

∫ +∞

0

t−α/2(λj + t)−1fjψj dt

= cα

∫ +∞

0

t−α/2
∞∑
j=1

(λj + t)−1fjψj dt

= cα

∫ +∞

0

t−α/2(L+ t Id)−1f dt.
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How to compute the solution numerically ?
Euler’s reflection formula

L−α/2f = cα

∫ +∞

0

t−α/2(L+ t Id)−1f dt,

and with a nice change of variable,

L−α/2f = cα

∫ +∞

−∞
eαy

(
Id+ e2y L

)−1
f dy for α ∈ (0, 2).

with cα :=
2 sin(πα/2)

π
.
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How to compute the solution numerically ?
Euler’s reflection formula

u = L−α/2f = cα

∫ +∞

−∞
eαy

(
Id+ e2y L

)−1
f dy for α ∈ (0, 2).

Let us denote uy := (Id+ e2y L)−1f . This function is solution
to the following problem (in weak formulation)∫

Ω

uyv + e2y
∫
Ω

∇uy · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω).

We want to discretize the above integral into a finite sum in-
volving computable terms.
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How to compute the solution numerically ?
Euler’s reflection formula

cα

∫ +∞

−∞
eαy uy dy = u ≈ uN1 := cα

N∑
l=−N

ωl e
αyl uyl,1.

1. Using FEM, we discretize the function uy into uy,1
solution to∫
Ω

uy,1vy,1 + e2y
∫
Ω

∇uy,1 · ∇vy,1 =
∫
Ω

fvy,1 ∀vy,1 ∈ V 1.

2. We discretize the integral using a simple rectangle
quadrature rule of weights ωl = 1√

N
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A posteriori error estimation
Euler’s reflection formula

We would like to quantify the approximation error:

∥e∥L2 := ∥u− uN
1 ∥L2 :=

∥∥∥∥∥cα
∫ +∞

−∞
eαy uydy −

cα√
N

N∑
l=−N

eαyl uyl,1

∥∥∥∥∥
L2

.

To do so, we introduce

u1 := cα

∫ +∞

−∞
eαy uy,1dy.

We have,

∥u− uN1 ∥L2

= ∥u− u1 + u1 − uN1 ∥L2

⩽ ∥u− u1∥L2︸ ︷︷ ︸
FE error

+ ∥u1 − uN1 ∥L2︸ ︷︷ ︸
quadrature error

.
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A posteriori error estimation
Finite element error

We want to quantify the finite element error ∥u− u1∥L2 .

u− u1 = cα

∫ +∞

−∞
eαy uydy − cα

∫ +∞

−∞
eαy uy,1dy

= cα

∫ +∞

−∞
eαy(uy − uy,1)dy.

Idea: We already know an estimator for the error uy − uy,1.
Can we use it to estimate u− u1 ?
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A posteriori error estimation
Finite element error

For a fixed y in R and for a cell T of the mesh, we compute
ebwy,T ∈ V bw(T ) the solution to
∫
T
ebwy,T vT + e2y

∫
T
∇ebwy,T · ∇vT =

∫
T
ry,T vT +

∑
E∈∂T

∫
E
Jy,EvT ∀vT ∈ V bw(T ).

We compute
ebwT := cα

∫ +∞

−∞
eαy ebwy,Tdy,

ηbw,T := ∥ebwT ∥L2 and η2bw :=
∑
T∈T

η2bw,T .

∥u− u1∥L2 ≈ ηbw?
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Numerical results
Let’s try it out!

Adaptive refinement algorithm:
1. fix a tolerance ε, pick an initial (coarse) mesh Tj (j = 0) and pick a very fine

quadrature rule {yl}Nl=−N (take N large),

2. for each quadrature point yl:

▶ solve the PDE on Tj to get ujyl,1,
▶ for each cell T of Tj , solve the BW equation on T to compute ebw,j

yl,T
,

3. sum the functions ujyl,1 into the quadrature rule to get uj1,
4. for each cell T of Tj :

▶ sum (over l) the functions ebw,j
yl,T

into the quadrature rule to get ebw,j
T ,

▶ compute the local contributions of the estimator ηjbw,T := ∥ebw,j
T ∥L2 ,

5. sum (over T ) the local contributions ηjbw,T to get ηjbw,
6. check if ηjbw ⩽ ε,

▶ ✓ stop the algorithm and return uj1.
▶ 7 continue,

7. mark the cells we need to refine (e.g. each cell T for which
ηjbw,T ⩾ 0.9 max

T∈Tj

ηjbw,T ),

8. refine the mesh Tj into Tj+1,
9. go back to 2. replacing j by j + 1.
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▶ solve the PDE on Tj to get ujyl,1,
▶ for each cell T of Tj , solve the BW equation on T to compute ebw,j

yl,T
,

3. sum the functions ujyl,1 into the quadrature rule to get uj1,
4. for each cell T of Tj :

▶ sum (over l) the functions ebw,j
yl,T

into the quadrature rule to get ebw,j
T ,

▶ compute the local contributions of the estimator ηjbw,T := ∥ebw,j
T ∥L2 ,

5. sum (over T ) the local contributions ηjbw,T to get ηjbw,
6. check if ηjbw ⩽ ε,

▶ ✓ stop the algorithm and return uj1.
▶ 7 continue,

7. mark the cells we need to refine (e.g. each cell T for which
ηjbw,T ⩾ 0.9 max

T∈Tj

ηjbw,T ),

8. refine the mesh Tj into Tj+1,
9. go back to 2. replacing j by j + 1.
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Numerical results
Let’s try it out!

Taking f = 1, we solve

(−∆)α/2u = f in Ω

u = 0 on Γ.

using finite elements and Euler’s
reflection formula and we esti-
mate the error using the Bank-
Weiser estimator.
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Numerical results
Let’s try it out!

α/2 = 0.5 α/2 = 0.25 α/2 = 0.125
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Numerical results
Let’s try it out!
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Numerical results
Let’s try it out! α/2 = 0.5

Uniform refinement:
Initial mesh

Exact error ≈ 0.1079
Linear system dim. = 25

Adaptive refinement:
Initial mesh

Exact error ≈ 0.1079
Linear system dim. = 25
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Numerical results
Let’s try it out! α/2 = 0.5

Uniform refinement:
3rd mesh

Exact error ≈ 0.0055
Linear system dim. = 1089

Adaptive refinement:
7th mesh

Exact error ≈ 0.0060
Linear system dim. = 667
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Numerical results
Let’s try it out! α/2 = 0.5

Uniform refinement:
5th mesh

Exact error ≈ 0.0007
Linear system dim. = 16641

Adaptive refinement:
13th mesh

Exact error ≈ 0.0006
Linear system dim. = 7791
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Challenges

• Computational science/engineering:

▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).
▶ Apply it to a real-world problem.

• Mathematics:

▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).
▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.

▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).
▶ Apply it to a real-world problem.

• Mathematics:

▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).
▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.

▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).
▶ Apply it to a real-world problem.

• Mathematics:

▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).
▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.

▶ Extend the method to more complicated problems (e.g. time dependent
PDEs).

▶ Apply it to a real-world problem.
• Mathematics:

▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).
▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).

▶ Apply it to a real-world problem.
• Mathematics:

▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).
▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).
▶ Apply it to a real-world problem.

• Mathematics:

▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).
▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).
▶ Apply it to a real-world problem.

• Mathematics:

▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).
▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).
▶ Apply it to a real-world problem.

• Mathematics:
▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).

▶ Bound the finite element error in L2 norm without extra regularity
assumption on the solution (even for non-fractional problems).

▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).
▶ Apply it to a real-world problem.

• Mathematics:
▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).

▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).
▶ Apply it to a real-world problem.

• Mathematics:
▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).
▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Challenges

• Computational science/engineering:
▶ Compare with other methods.
▶ Add a posteriori error estimation on the quadrature scheme.
▶ Write a parallel code.
▶ Extend the method to more complicated problems (e.g. time dependent

PDEs).
▶ Apply it to a real-world problem.

• Mathematics:
▶ Justify the reliability of the estimator (∥e∥L2 ⩽ Cηbw).
▶ Bound the finite element error in L2 norm without extra regularity

assumption on the solution (even for non-fractional problems).
▶ Prove the convergence of the adaptive scheme.

• Become famous and get a permanent job.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation 42/43



Thank you for your attention!
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