Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

Raphaël Bulle

University of Luxembourg Université de Bourgogne Franche-Comté

February 23, 2021

Table of contents

- A finite element method Example of elliptic PDE A finite element method Error estimation Numerical results
- Application to a fractional Laplacian problem The spectral fractional Laplacian How to compute the solution numerically ? A posteriori error estimation

Challenges

Table of contents

• A finite element method Example of elliptic PDE A finite element method Error estimation Numerical results

 Application to a fractional Laplacian problem The spectral fractional Laplacian How to compute the solution numerically ? A posteriori error estimation

Challenges

Example of elliptic PDE

Let $\gamma \in \mathbb{R}^{+,*}$ and $f \in L^2(\Omega)$. We are looking for u (with sufficient regularity) such that

$$u - \gamma \Delta u = f$$
 in Ω
 $u = 0$ on Γ ,

where $\Delta u(x_1, x_2) := (\partial_{xx}^2 + \partial_{yy}^2)u$.

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

Example of elliptic PDE

Instead of looking at the strong formulation: find u satisfying

$$u - \gamma \Delta u = f$$
 in Ω
 $u = 0$ on Γ ,

Example of elliptic PDE

Instead of looking at the strong formulation: find u satisfying

$$u - \gamma \Delta u = f$$
 in Ω
 $u = 0$ on Γ ,

we consider the weak formulation: find a function u in $H^1_0(\Omega)$ such that

$$\int_{\Omega} uv + \gamma \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv \quad \forall v \in H_0^1(\Omega),$$

where $H_0^1(\Omega)$ is the Sobolev space of functions v in $L^2(\Omega)$ vanishing on Γ and with $\partial_x v$ and $\partial_y v$ in $L^2(\Omega)$.

Discretization

Goal: Compute a numerical approximation to u, solution to

$$\int_{\Omega} uv + \gamma \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv \quad \forall v \in H_0^1(\Omega).$$

Discretization

Let
$$\mathcal{T} = \{T\}$$
 be a mesh on Ω , of edges $\mathcal{E} = \{E\}.$

Discretization

Let $\mathcal{T} = \{T\}$ be a mesh on Ω , of edges $\mathcal{E} = \{E\}$. We consider $V^1 \subset H^1_0(\Omega)$ the space in of continuous piecewise linear polynomial functions over \mathcal{T} , vanishing on Γ .

Discretization

Let $\mathcal{T} = \{T\}$ be a mesh on Ω , of edges $\mathcal{E} = \{E\}$. We consider $V^1 \subset H^1_0(\Omega)$ the space \overline{A} of continuous piecewise linear polynomial functions over \mathcal{T} , vanishing on Γ .

Let $u_1 \in V^1$ be the solution to

$$\int_{\Omega} u_1 v_1 + \gamma \int_{\Omega} \nabla u_1 \cdot \nabla v_1 = \int_{\Omega} f v_1 \quad \forall v_1 \in V^1.$$

Discretization

Original problem:

$$\int_{\Omega} uv + \gamma \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv \quad \forall v \in H_0^1(\Omega).$$

Discretization

Original problem:

$$\int_{\Omega} uv + \gamma \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv \quad \forall v \in H^1_0(\Omega).$$

Linear Lagrange finite element discretization:

$$\int_{\Omega} u_1 v_1 + \gamma \int_{\Omega} \nabla u_1 \cdot \nabla v_1 = \int_{\Omega} f v_1 \quad \forall v_1 \in V^1.$$

Discretization

Original problem:

$$\int_{\Omega} uv + \gamma \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv \quad \forall v \in H_0^1(\Omega).$$

Linear Lagrange finite element discretization:

$$\int_{\Omega} u_1 v_1 + \gamma \int_{\Omega} \nabla u_1 \cdot \nabla v_1 = \int_{\Omega} f v_1 \quad \forall v_1 \in V^1.$$

We take $u_1 \approx u$.

Discretization

Let's try it out!

Discretization

Let's try it out! We take $\gamma=1\text{, }f=1$ and solve

$$\int_{\Omega} u_1 v_1 + \int_{\Omega} \nabla u_1 \cdot \nabla v_1 = \int_{\Omega} f v_1 \quad \forall v_1 \in V^1.$$

Discretization

Let's try it out! We take $\gamma=1\text{, }f=1$ and solve

$$\int_{\Omega} u_1 v_1 + \int_{\Omega} \nabla u_1 \cdot \nabla v_1 = \int_{\Omega} f v_1 \quad \forall v_1 \in V^1.$$

using

Discretization Let's try it out! We take $\gamma = 1$, f = 1 and solve

$$\int_{\Omega} u_1 v_1 + \int_{\Omega} \nabla u_1 \cdot \nabla v_1 = \int_{\Omega} f v_1 \quad \forall v_1 \in V^1.$$

Discretization Let's try it out! We take $\gamma = 1$, f = 1 and solve

$$\int_{\Omega} u_1 v_1 + \int_{\Omega} \nabla u_1 \cdot \nabla v_1 = \int_{\Omega} f v_1 \quad \forall v_1 \in V^1.$$

Discretization Let's try it out! We take $\gamma = 1$, f = 1 and solve $\int_{\Omega} u_1 v_1 + \int_{\Omega} \nabla u_1 \cdot \nabla v_1 = \int_{\Omega} f v_1 \quad \forall v_1 \in V^1.$

(Linear system dimension: 66049.)

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

Table of contents

 A finite element method Example of elliptic PDE A finite element method Error estimation Numerical results

 Application to a fractional Laplacian problem The spectral fractional Laplacian How to compute the solution numerically ? A posteriori error estimation

Challenges

A priori error estimation

What can we say about the discretization error ?

A priori error estimation

What can we say about the discretization error ? We quantify the error $e := u - u_1$ using the energy norm

$$\|e\|_{\gamma} := \left(\int_{\Omega} e^2 + \gamma \int_{\Omega} \nabla e \cdot \nabla e\right)^{1/2}$$

A priori error estimation

What can we say about the discretization error ? We quantify the error $e := u - u_1$ using the energy norm

$$\|e\|_{\gamma} := \left(\int_{\Omega} e^2 + \gamma \int_{\Omega} \nabla e \cdot \nabla e\right)^{1/2}.$$

A priori error estimation

Let Ω be an open subset of \mathbb{R}^2 of polygonal boundary and let $\{\mathcal{T}_h\}_{h>0}$ be a shape-regular family of conformal meshes of Ω . Then,

 $\lim_{h \to 0} \|e\|_{\gamma} = 0.$

Moreover, if $u \in H^2(\Omega)$ there exists c_{γ} such that

 $\|e\|_{\gamma} \leqslant c_{\gamma} h |u|_{H^2}.$

 $H^{2}(\Omega) := \left\{ v \in L^{2}(\Omega), \ \partial^{\alpha} u \in L^{2}(\Omega), \ \alpha \in \mathbb{N}^{2}, \ |\alpha| \leq 2 \right\} \text{ is an Hilbert space on which}$ we define the semi-norm, $|u|_{H^{2}}^{2} := \|\partial_{xx}^{2}u\|_{L^{2}}^{2} + \|\partial_{yy}^{2}u\|_{L^{2}}^{2} + \|\partial_{xy}^{2}u\|_{L^{2}}^{2}.$ Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

A priori error estimation

What can we say about the discretization error ? We quantify the error $e := u - u_1$ using the energy norm

$$||e||_{\gamma} := \left(\int_{\Omega} e^2 + \gamma \int_{\Omega} \nabla e \cdot \nabla e\right)^{1/2}.$$

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

What happened ?

A priori error estimation

$||e||_{\gamma} \leqslant c_{\gamma} h |u|_{H^2}.$

What happened ?

A priori error estimation

 $||e||_{\gamma} \leqslant c_{\gamma} h|u|_{H^2}.$

The solution u does not belong to $H^2(\Omega)!$ ∇u admits a singularity in the reentrant corner of Ω [Grisvard, 1986].

A posteriori error estimation

• How to deal with solutions having local features ?

A posteriori error estimation

- How to deal with solutions having local features ?
- How to quantify the discretization error ?

A posteriori error estimation

- How to deal with solutions having local features ?
- How to quantify the discretization error ?
- How to choose the size of the mesh to reach a certain tolerance ?

A posteriori error estimation

- How to deal with solutions having local features ?
- How to quantify the discretization error ?
- How to choose the size of the mesh to reach a certain tolerance ?

A priori error estimation	A posteriori error estimation
$\ e\ _{\gamma} \leqslant \widetilde{C}(u)$	$\ e\ _{\gamma} \approx \eta$
$\widetilde{C}(u)$ is unknown.	η is known.

A posteriori error estimation

Let η be an a posteriori error estimator. We would like η to be:

• computable from problem data (f, boundary conditions data...) and u_1 only,

A posteriori error estimation

Let η be an a posteriori error estimator. We would like η to be:

- computable from problem data (f, boundary conditions data...) and u_1 only,
- reliable i.e. there exists a constant ${\cal C}$ only depending on the mesh regularity such that

 $\|e\|_{\gamma} \leqslant C\eta \quad \text{with } C \text{ close to } 1,$

A posteriori error estimation

Let η be an a posteriori error estimator. We would like η to be:

- computable from problem data (f, boundary conditions data...) and u_1 only,
- reliable i.e. there exists a constant ${\cal C}$ only depending on the mesh regularity such that

 $\|e\|_{\gamma} \leqslant C\eta \quad \text{with } C \text{ close to } 1,$

• efficient i.e. there exists a constant \boldsymbol{c} only depending on the mesh regularity such that

 $c\eta \leqslant \|e\|_{\gamma}$ with c close to 1,

A posteriori error estimation

Let η be an a posteriori error estimator. We would like η to be:

- computable from problem data (f, boundary conditions data...) and u₁ only,
- reliable i.e. there exists a constant ${\cal C}$ only depending on the mesh regularity such that

 $\|e\|_{\gamma}\leqslant C\eta\quad \text{with }C\text{ close to }1,$

- efficient i.e. there exists a constant \boldsymbol{c} only depending on the mesh regularity such that

 $c\eta\leqslant \|e\|_{\gamma}\quad \text{with c close to 1},$

• local i.e.

$$\eta = \sum_{T \in \mathcal{T}} \eta_T,$$

A posteriori error estimation

Let η be an a posteriori error estimator. We would like η to be:

- computable from problem data (f, boundary conditions data...) and u_1 only,
- reliable i.e. there exists a constant ${\cal C}$ only depending on the mesh regularity such that

 $\|e\|_{\gamma} \leqslant C\eta \quad \text{with } C \text{ close to } 1,$

- efficient i.e. there exists a constant \boldsymbol{c} only depending on the mesh regularity such that

$$c\eta \leqslant \|e\|_{\gamma}$$
 with c close to 1,

• local i.e.

$$\eta = \sum_{T \in \mathcal{T}} \eta_T,$$

• cheap to compute, ideally much less expensive than computing u_1 .

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

A posteriori error estimation

Let $e := u - u_1$, we can show that e is solution to the local problem:

$$\begin{split} &\int_{T} ev_{T} + \gamma \int_{T} \nabla e \cdot \nabla v_{T} = \int_{T} r_{\gamma,T} v_{T} + \sum_{E \in \partial T} \int_{E} J_{\gamma,E} v_{T} \quad \forall v_{T} \in H_{0}^{1}(T), \\ & \text{with } r_{\gamma,T} := (f - u_{1} + \gamma \Delta u_{1})_{|T} \text{ and } J_{\gamma,E} := \gamma \left[\left[\frac{\partial u_{1}}{\partial n} \right] \right]_{E}. \end{split}$$
A posteriori error estimation

Let $e := u - u_1$, we can show that e is solution to the local problem:

$$\begin{split} &\int_{T} ev_{T} + \gamma \int_{T} \nabla e \cdot \nabla v_{T} = \int_{T} r_{\gamma,T} v_{T} + \sum_{E \in \partial T} \int_{E} J_{\gamma,E} v_{T} \quad \forall v_{T} \in H_{0}^{1}(T), \\ & \text{with } r_{\gamma,T} := (f - u_{1} + \gamma \Delta u_{1})_{|T} \text{ and } J_{\gamma,E} := \gamma \left[\left[\frac{\partial u_{1}}{\partial n} \right] \right]_{E}. \end{split}$$

We consider $V^{\mathrm{bw}}(T) \subset V^2(T)$ a particular local finite element space.

A posteriori error estimation

Let $e := u - u_1$, we can show that e is solution to the local problem:

$$\begin{split} &\int_{T} ev_{T} + \gamma \int_{T} \nabla e \cdot \nabla v_{T} = \int_{T} r_{\gamma,T} v_{T} + \sum_{E \in \partial T} \int_{E} J_{\gamma,E} v_{T} \quad \forall v_{T} \in H_{0}^{1}(T), \\ & \text{with } r_{\gamma,T} := (f - u_{1} + \gamma \Delta u_{1})_{|T} \text{ and } J_{\gamma,E} := \gamma \left[\left[\frac{\partial u_{1}}{\partial n} \right] \right]_{E}. \end{split}$$

We consider $V^{\mathrm{bw}}(T) \subset V^2(T)$ a particular local finite element space. For a cell T in \mathcal{T} , we define $e_T^{\mathrm{bw}} \in V^{\mathrm{bw}}(T)$ the solution to

$$\int_{T} e_{T}^{\mathrm{bw}} v_{T} + \gamma \int_{T} \nabla e_{T}^{\mathrm{bw}} \cdot \nabla v_{T} = \int_{T} r_{\gamma,T} v_{T} + \sum_{E \in \partial T} \int_{E} J_{\gamma,E} v_{T} \quad \forall v_{T} \in V^{\mathrm{bw}}(T),$$

A posteriori error estimation

The local Bank-Weiser a posteriori error estimator [Bank, Weiser, 1985] is defined by:

 $\eta_T := \|e_T^{\mathrm{bw}}\|_{\gamma},$

A posteriori error estimation

The local Bank-Weiser a posteriori error estimator [Bank, Weiser, 1985] is defined by:

$$\eta_T := \|e_T^{\mathrm{bw}}\|_{\gamma},$$

and the global estimator by:

$$\eta_{\rm bw}^2 := \sum_{T \in \mathcal{T}} \eta_T^2.$$

A posteriori error estimation

Is the Bank-Weiser estimator a good estimator ?

• computable from data and u_1 only: \checkmark

A posteriori error estimation

Is the Bank-Weiser estimator a good estimator ?

- computable from data and u_1 only: \checkmark
- reliable ($||e||_{\gamma} \leq C\eta_{\text{bw}}$):

A posteriori error estimation

Is the Bank-Weiser estimator a good estimator ?

- computable from data and u_1 only: \checkmark
- reliable ($||e||_{\gamma} \leqslant C\eta_{\text{bw}}$):

 under a constraining assumption on the solution u [Bank, Weiser, 1985],

A posteriori error estimation

Is the Bank-Weiser estimator a good estimator ?

- computable from data and u_1 only: \checkmark
- reliable ($||e||_{\gamma} \leq C\eta_{\text{bw}}$):
 - under a constraining assumption on the solution u [Bank, Weiser, 1985],
 - without the assumption, for linear finite elements in 1D and 2D [Nochetto, 1993],

A posteriori error estimation

- Is the Bank-Weiser estimator a good estimator ?
 - computable from data and u_1 only: \checkmark
 - reliable ($||e||_{\gamma} \leqslant C\eta_{\text{bw}}$):
 - under a constraining assumption on the solution u [Bank, Weiser, 1985],
 - without the assumption, for linear finite elements in 1D and 2D [Nochetto, 1993],
 - vithout the assumption, for linear finite elements in 3D [B., Chouly, Hale, Lozinski, 2019],

A posteriori error estimation

- Is the Bank-Weiser estimator a good estimator ?
 - computable from data and u_1 only: \checkmark
 - reliable ($||e||_{\gamma} \leqslant C\eta_{\text{bw}}$):
 - under a constraining assumption on the solution u [Bank, Weiser, 1985],
 - vithout the assumption, for linear finite elements in 1D and 2D [Nochetto, 1993],
 - vithout the assumption, for linear finite elements in 3D [B., Chouly, Hale, Lozinski, 2019],
 - ► X still an open problem for higher order finite elements.

A posteriori error estimation

Is the Bank-Weiser estimator a good estimator ?

- computable from data and u_1 only: \checkmark
- reliable ($||e||_{\gamma} \leqslant C\eta_{\text{bw}}$):
 - under a constraining assumption on the solution u [Bank, Weiser, 1985],
 - vithout the assumption, for linear finite elements in 1D and 2D [Nochetto, 1993],
 - vithout the assumption, for linear finite elements in 3D [B., Chouly, Hale, Lozinski, 2019],
 - ► X still an open problem for higher order finite elements.
- efficient $(c\eta_{\mathrm{bw}}\leqslant \|e\|_{\gamma})$: \checkmark [Bank, Weiser, 1985],

A posteriori error estimation

Is the Bank-Weiser estimator a good estimator ?

- computable from data and u_1 only: \checkmark
- reliable ($||e||_{\gamma} \leq C\eta_{\text{bw}}$):
 - under a constraining assumption on the solution u [Bank, Weiser, 1985],
 - vithout the assumption, for linear finite elements in 1D and 2D [Nochetto, 1993],
 - vithout the assumption, for linear finite elements in 3D [B., Chouly, Hale, Lozinski, 2019],
 - ► X still an open problem for higher order finite elements.
- efficient $(c\eta_{\mathrm{bw}}\leqslant \|e\|_{\gamma})$: \checkmark [Bank, Weiser, 1985],

• local: 🗸

A posteriori error estimation

- Is the Bank-Weiser estimator a good estimator ?
 - computable from data and u_1 only: \checkmark
 - reliable ($||e||_{\gamma} \leqslant C\eta_{\text{bw}}$):
 - under a constraining assumption on the solution u [Bank, Weiser, 1985],
 - vithout the assumption, for linear finite elements in 1D and 2D [Nochetto, 1993],
 - without the assumption, for linear finite elements in 3D [B., Chouly, Hale, Lozinski, 2019],
 - ► X still an open problem for higher order finite elements.
 - efficient ($c\eta_{
 m bw}\leqslant \|e\|_{\gamma}$): \checkmark [Bank, Weiser, 1985],
 - local: 🗸
 - cheap: 🗸 [Bordas, B., Chouly, Hale, Lozinski, 2020].

Table of contents

• A finite element method

Example of elliptic PDE A finite element method Error estimation Numerical results

 Application to a fractional Laplacian problem The spectral fractional Laplacian How to compute the solution numerically ? A posteriori error estimation

Challenges

Let's try it out!

Adaptive refinement algorithm:

1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l = 0),

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,
- 3. Loop over the cells T of \mathcal{T}_l :

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,
- 3. Loop over the cells T of \mathcal{T}_l :
 - solve the BW equation on T,

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,
- 3. Loop over the cells T of \mathcal{T}_l :
 - solve the BW equation on T,
 - compute the local estimator η_T ,

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,
- 3. Loop over the cells T of \mathcal{T}_l :
 - solve the BW equation on T,
 - compute the local estimator η_T ,
- 4. compute the global estimator $\eta_{\rm bw}$ and check if $\eta_{\rm bw}\leqslant \varepsilon$,

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,
- 3. Loop over the cells T of \mathcal{T}_l :
 - solve the BW equation on T,
 - compute the local estimator η_T ,
- 4. compute the global estimator $\eta_{\rm bw}$ and check if $\eta_{\rm bw}\leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^l .

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,
- 3. Loop over the cells T of \mathcal{T}_l :
 - solve the BW equation on T,
 - compute the local estimator η_T ,
- 4. compute the global estimator $\eta_{\rm bw}$ and check if $\eta_{\rm bw}\leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^l .
 - X continue,

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,
- 3. Loop over the cells T of \mathcal{T}_l :
 - solve the BW equation on T,
 - compute the local estimator η_T ,
- 4. compute the global estimator $\eta_{\rm bw}$ and check if $\eta_{\rm bw}\leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^l .
 - X continue,
- 5. mark the cells we need to refine (e.g. each cell T for which $\eta_T \ge 0.9 \max_{T \in \mathcal{T}_l} \eta_T),$

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,
- 3. Loop over the cells T of \mathcal{T}_l :
 - solve the BW equation on T,
 - compute the local estimator η_T ,
- 4. compute the global estimator $\eta_{\rm bw}$ and check if $\eta_{\rm bw}\leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^l .
 - X continue,
- 5. mark the cells we need to refine (e.g. each cell T for which $\eta_T \geqslant 0.9 \max_{T \in \mathcal{T}_l} \eta_T),$
- 6. refine the mesh \mathcal{T}_l into a new mesh \mathcal{T}_{l+1} ,

Let's try it out!

- 1. fix a tolerance ε and pick an initial (coarse) mesh \mathcal{T}_l (l=0),
- 2. solve the PDE to get u_1^l on \mathcal{T}_l ,
- 3. Loop over the cells T of \mathcal{T}_l :
 - solve the BW equation on T,
 - compute the local estimator η_T ,
- 4. compute the global estimator $\eta_{\rm bw}$ and check if $\eta_{\rm bw}\leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^l .
 - X continue,
- 5. mark the cells we need to refine (e.g. each cell T for which $\eta_T \ge 0.9 \max_{T \in \mathcal{T}_l} \eta_T),$
- 6. refine the mesh \mathcal{T}_l into a new mesh \mathcal{T}_{l+1} ,
- 7. go back to 2. replacing l by l + 1.

Let's try it out!

Let's try it out! Uniform refinement: Initial mesh

Adaptive refinement: Initial mesh

Exact error ≈ 0.2210 Linear system dim. = 25 Exact error ≈ 0.2210 Linear system dim. = 25

Let's try it out! Uniform refinement:

3rd mesh

Adaptive refinement: 6th mesh

Exact error ≈ 0.0371 Linear system dim. = 1089

Exact error ≈ 0.0372 Linear system dim. = 757

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

Let's try it out! Uniform refinement: 6th mesh

Adaptive refinement: 11th mesh

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

Let's try it out! Uniform refinement: 6th mesh

Adaptive refinement: 11th mesh

Exact error ≈ 0.0076 Linear system dim. = 66049 Exact error ≈ 0.0081 Linear system dim. = 15429

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

Table of contents

 A finite element method Example of elliptic PDE A finite element method Error estimation Numerical results

 Application to a fractional Laplacian problem The spectral fractional Laplacian How to compute the solution numerically ? A posteriori error estimation

Challenges

The spectral fractional Laplacian

Let $\alpha \in (0,2)$ and $f \in L^2(\Omega),$ we are looking for $u \in L^2(\Omega)$

(with sufficient regularity) such that

$$(-\Delta)^{\alpha/2}u = f$$
 in Ω ,
 $u = 0$ on Γ .

The spectral fractional Laplacian

Let $\alpha \in (0,2)$ and $f \in L^2(\Omega)$, we are looking for $u \in L^2(\Omega)$ (with sufficient regularity) such that

$$(-\Delta)^{\alpha/2}u = f$$
 in Ω ,
 $u = 0$ on Γ .

How is the function u defined ?

Let ${\mathcal L}$ be the Laplace-Dirichlet operator on Ω such that ${\mathcal L} w = f$ if w is the solution of

 $\begin{aligned} -\Delta w &= f \quad \text{in } \Omega, \\ w &= 0 \quad \text{on } \Gamma. \end{aligned}$

The spectral fractional Laplacian

Let $\alpha \in (0,2)$ and $f \in L^2(\Omega)$, we are looking for $u \in L^2(\Omega)$ (with sufficient regularity) such that

$$(-\Delta)^{\alpha/2}u = f$$
 in Ω ,
 $u = 0$ on Γ .

How is the function u defined ?

Let $\mathcal L$ be the Laplace-Dirichlet operator on Ω such that $\mathcal L w = f$ if w is the solution of

$$\begin{split} -\Delta w &= f \quad \text{in } \Omega, \\ w &= 0 \quad \text{on } \Gamma. \end{split}$$

We consider the weak formulation: w in $H_0^1(\Omega)$ is solution to

$$\int_{\Omega} \nabla w \cdot \nabla v = \int_{\Omega} f v \quad \forall v \in H^1_0(\Omega).$$

The spectral fractional Laplacian

The eigenfunctions $\{\psi_j\}_{j=1}^{\infty}$ of \mathcal{L} form a basis of $L^2(\Omega)$.

$$f = \sum_{j=1}^{\infty} f_j \psi_j,$$

with $f_j := \int_{\Omega} f \psi_j$ for $j = 1, \cdots, \infty$.

The spectral fractional Laplacian

The eigenfunctions $\{\psi_j\}_{j=1}^{\infty}$ of \mathcal{L} form a basis of $L^2(\Omega)$.

$$f = \sum_{j=1}^{\infty} f_j \psi_j,$$

with $f_j := \int_{\Omega} f \psi_j$ for $j = 1, \dots, \infty$. If $\{\lambda_j\}_{j=1}^{\infty}$ are the corresponding eigenvalues, we define the solution u as follow:

$$u = (-\Delta)^{-\alpha/2} f = \mathcal{L}^{-\alpha/2} f := \sum_{j=1}^{\infty} \lambda_j^{-\alpha/2} f_j \psi_j.$$
Table of contents

 A finite element method Example of elliptic PDE A finite element method Error estimation Numerical results

 Application to a fractional Laplacian problem The spectral fractional Laplacian How to compute the solution numerically ? A posteriori error estimation

Challenges

How to compute the solution numerically ?

There are many ways to compute a numercial approximation to the solution u e.g.

How to compute the solution numerically ?

There are many ways to compute a numercial approximation to the solution u e.g.

• using spectral method [Song, Xu, Karniadakis, 2017],

How to compute the solution numerically ?

There are many ways to compute a numercial approximation to the solution u e.g.

- using spectral method [Song, Xu, Karniadakis, 2017],
- using Euler's reflection formula [Bonito, Pasciak, 2013],

How to compute the solution numerically ?

There are many ways to compute a numercial approximation to the solution u e.g.

- using spectral method [Song, Xu, Karniadakis, 2017],
- using Euler's reflection formula [Bonito, Pasciak, 2013],
- using Cauchy's integral formula

[Gavrilyuk, Hackbusch, Khoromskij, 2004] [Bonito, Lei, Pasciak, 2016],

How to compute the solution numerically ?

There are many ways to compute a numercial approximation to the solution u e.g.

- using spectral method [Song, Xu, Karniadakis, 2017],
- using Euler's reflection formula [Bonito, Pasciak, 2013],
- using Cauchy's integral formula [Gavrilyuk, Hackbusch, Khoromskij, 2004] [Bonito, Lei, Pasciak, 2016],
- using polynomial interpolation...

How to compute the solution numerically ?

There are many ways to compute a numercial approximation to the solution u e.g.

- using spectral method [Song, Xu, Karniadakis, 2017],
- using Euler's reflection formula [Bonito, Pasciak, 2013],
- using Cauchy's integral formula [Gavrilyuk, Hackbusch, Khoromskij, 2004] [Bonito, Lei, Pasciak, 2016],
- using polynomial interpolation...

Euler's reflection formula

$$\frac{\pi}{\sin(\pi\theta)} = \int_0^{+\infty} t^{\theta-1} (1+t)^{-1} \, \mathrm{d}t \quad \forall \theta \in (0,1).$$

Euler's reflection formula

$$\frac{\pi}{\sin(\pi\theta)} = \int_0^{+\infty} t^{\theta-1} (1+t)^{-1} \, \mathrm{d}t \quad \forall \theta \in (0,1).$$

Some tweaks lead to

$$s^{\theta-1} = c_{\theta} \int_{0}^{+\infty} t^{\theta-1} (s+t)^{-1} dt \quad \forall s > 0 \text{ and } \forall \theta \in (0,1),$$

with $c_{\theta} = \frac{\sin(\pi\theta)}{\pi}$.

Euler's reflection formula

$$\frac{\pi}{\sin(\pi\theta)} = \int_0^{+\infty} t^{\theta-1} (1+t)^{-1} \, \mathrm{d}t \quad \forall \theta \in (0,1).$$

Some tweaks lead to

$$s^{\theta-1} = c_{\theta} \int_{0}^{+\infty} t^{\theta-1} (s+t)^{-1} dt \quad \forall s > 0 \text{ and } \forall \theta \in (0,1),$$

with $c_{\theta} = \frac{\sin(\pi\theta)}{\pi}$. Then, for $\theta - 1 = -\alpha/2 \in (-1, 0)$ and $s = \lambda_j$, $j \in [1, +\infty)$,

$$\lambda_j^{-\alpha/2} = c_\alpha \int_0^{+\infty} t^{-\alpha/2} (\lambda_j + t)^{-1} \, \mathrm{d}t.$$

Euler's reflection formula

$$\lambda_j^{-\alpha/2} = c_\alpha \int_0^{+\infty} t^{-\alpha/2} (\lambda_j + t)^{-1} dt.$$

Then,

$$\mathcal{L}^{-\alpha/2}f = \sum_{j=1}^{\infty} \lambda_j^{-\alpha/2} f_j \psi_j$$

Euler's reflection formula

$$\lambda_j^{-\alpha/2} = c_\alpha \int_0^{+\infty} t^{-\alpha/2} (\lambda_j + t)^{-1} dt.$$

Then,

$$\mathcal{L}^{-\alpha/2}f = \sum_{j=1}^{\infty} \lambda_j^{-\alpha/2} f_j \psi_j$$
$$= \sum_{j=1}^{\infty} c_\alpha \int_0^{+\infty} t^{-\alpha/2} (\lambda_j + t)^{-1} f_j \psi_j \, \mathrm{d}t$$

Euler's reflection formula

$$\lambda_j^{-\alpha/2} = c_\alpha \int_0^{+\infty} t^{-\alpha/2} (\lambda_j + t)^{-1} dt.$$

Then,

$$\mathcal{L}^{-\alpha/2}f = \sum_{j=1}^{\infty} \lambda_j^{-\alpha/2} f_j \psi_j$$
$$= \sum_{j=1}^{\infty} c_\alpha \int_0^{+\infty} t^{-\alpha/2} (\lambda_j + t)^{-1} f_j \psi_j \, \mathrm{d}t$$
$$= c_\alpha \int_0^{+\infty} t^{-\alpha/2} \sum_{j=1}^{\infty} (\lambda_j + t)^{-1} f_j \psi_j \, \mathrm{d}t$$

Euler's reflection formula

$$\lambda_j^{-\alpha/2} = c_\alpha \int_0^{+\infty} t^{-\alpha/2} (\lambda_j + t)^{-1} dt.$$

Then,

$$\mathcal{L}^{-\alpha/2}f = \sum_{j=1}^{\infty} \lambda_j^{-\alpha/2} f_j \psi_j$$

= $\sum_{j=1}^{\infty} c_\alpha \int_0^{+\infty} t^{-\alpha/2} (\lambda_j + t)^{-1} f_j \psi_j \, \mathrm{d}t$
= $c_\alpha \int_0^{+\infty} t^{-\alpha/2} \sum_{j=1}^{\infty} (\lambda_j + t)^{-1} f_j \psi_j \, \mathrm{d}t$
= $c_\alpha \int_0^{+\infty} t^{-\alpha/2} (\mathcal{L} + t \, \mathrm{Id})^{-1} f \, \mathrm{d}t.$

Discretization of the fractional Laplacian using finite element methods and a posteriori error estimation

Euler's reflection formula

$$\mathcal{L}^{-\alpha/2}f = c_{\alpha} \int_0^{+\infty} t^{-\alpha/2} (\mathcal{L} + t \operatorname{Id})^{-1} f \, \mathrm{d}t,$$

Euler's reflection formula

$$\mathcal{L}^{-\alpha/2}f = c_{\alpha} \int_0^{+\infty} t^{-\alpha/2} (\mathcal{L} + t \operatorname{Id})^{-1} f \, \mathrm{d}t,$$

and with a nice change of variable,

$$\mathcal{L}^{-\alpha/2}f = c_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} \left(\mathrm{Id} + e^{2y} \mathcal{L} \right)^{-1} f \, \mathrm{d}y \quad \text{for } \alpha \in (0, 2).$$

with $c_{\alpha} := \frac{2\sin(\pi\alpha/2)}{\pi}$.

Euler's reflection formula

$$u = \mathcal{L}^{-\alpha/2} f = c_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} \left(\mathrm{Id} + e^{2y} \mathcal{L} \right)^{-1} f \, \mathrm{d}y \quad \text{for } \alpha \in (0, 2).$$

Euler's reflection formula

$$u = \mathcal{L}^{-\alpha/2} f = c_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} \left(\mathrm{Id} + e^{2y} \mathcal{L} \right)^{-1} f \, \mathrm{d}y \quad \text{for } \alpha \in (0, 2).$$

Let us denote $u_y := (\mathrm{Id} + e^{2y} \mathcal{L})^{-1} f$. This function is solution to the following problem (in weak formulation)

$$\int_{\Omega} u_y v + e^{2y} \int_{\Omega} \nabla u_y \cdot \nabla v = \int_{\Omega} f v \quad \forall v \in H_0^1(\Omega).$$

Euler's reflection formula

$$u = \mathcal{L}^{-\alpha/2} f = c_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} \left(\mathrm{Id} + e^{2y} \mathcal{L} \right)^{-1} f \, \mathrm{d}y \quad \text{for } \alpha \in (0, 2).$$

Let us denote $u_y := (\mathrm{Id} + e^{2y} \mathcal{L})^{-1} f$. This function is solution to the following problem (in weak formulation)

$$\int_{\Omega} u_y v + e^{2y} \int_{\Omega} \nabla u_y \cdot \nabla v = \int_{\Omega} f v \quad \forall v \in H_0^1(\Omega).$$

We want to discretize the above integral into a finite sum involving computable terms.

Euler's reflection formula

$$c_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} u_y \, \mathrm{d}y = u \approx u_1^N := c_{\alpha} \sum_{l=-N}^N \omega_l \, e^{\alpha y_l} \, u_{y_l,1}.$$

Euler's reflection formula

$$c_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} u_y \, \mathrm{d}y = u \approx u_1^N := c_{\alpha} \sum_{l=-N}^N \omega_l e^{\alpha y_l} u_{y_l,1}.$$

1. Using FEM, we discretize the function u_y into $u_{y,1}$ solution to

$$\int_{\Omega} u_{y,1} v_{y,1} + e^{2y} \int_{\Omega} \nabla u_{y,1} \cdot \nabla v_{y,1} = \int_{\Omega} f v_{y,1} \quad \forall v_{y,1} \in V^1.$$

Euler's reflection formula

$$c_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} u_y \, \mathrm{d}y = u \approx u_1^N := c_{\alpha} \sum_{l=-N}^N \omega_l e^{\alpha y_l} u_{y_l,1}.$$

1. Using FEM, we discretize the function u_y into $u_{y,1}$ solution to

$$\int_{\Omega} u_{y,1} v_{y,1} + e^{2y} \int_{\Omega} \nabla u_{y,1} \cdot \nabla v_{y,1} = \int_{\Omega} f v_{y,1} \quad \forall v_{y,1} \in V^1.$$

2. We discretize the integral using a simple rectangle quadrature rule of weights $\omega_l = \frac{1}{\sqrt{N}}$ and points $y_l = \frac{l}{\sqrt{N}}$ for any $l \in [\![-N, \cdots, N]\!]$, where N is a user chosen parameter.

Table of contents

- A finite element method Example of elliptic PDE A finite element method Error estimation Numerical results
- Application to a fractional Laplacian problem The spectral fractional Laplacian How to compute the solution numerically ? A posteriori error estimation

Challenges

Euler's reflection formula

We would like to quantify the approximation error:

$$||e||_{L^2} := ||u - u_1^N||_{L^2} := \left\| c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_y dy - \frac{c_\alpha}{\sqrt{N}} \sum_{l=-N}^{N} e^{\alpha y_l} u_{y_l,1} \right\|_{L^2}.$$

Euler's reflection formula

We would like to quantify the approximation error:

$$\|e\|_{L^2} := \|u - u_1^N\|_{L^2} := \left\|c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_y dy - \frac{c_\alpha}{\sqrt{N}} \sum_{l=-N}^{N} e^{\alpha y_l} u_{y_l,1}\right\|_{L^2}.$$

To do so, we introduce

$$u_1 := c_\alpha \int_{-\infty}^{+\infty} \mathrm{e}^{\alpha y} \, u_{y,1} \mathrm{d} y.$$

Euler's reflection formula

We would like to quantify the approximation error:

$$\|e\|_{L^2} := \|u - u_1^N\|_{L^2} := \left\|c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_y dy - \frac{c_\alpha}{\sqrt{N}} \sum_{l=-N}^{N} e^{\alpha y_l} u_{y_l,1}\right\|_{L^2}.$$

To do so, we introduce

$$u_1 := c_\alpha \int_{-\infty}^{+\infty} \mathrm{e}^{\alpha y} \, u_{y,1} \mathrm{d}y.$$

We have,

 $||u - u_1^N||_{L^2}$

Euler's reflection formula

We would like to quantify the approximation error:

$$\|e\|_{L^2} := \|u - u_1^N\|_{L^2} := \left\|c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_y dy - \frac{c_\alpha}{\sqrt{N}} \sum_{l=-N}^{N} e^{\alpha y_l} u_{y_l,1}\right\|_{L^2}.$$

To do so, we introduce

$$u_1 := c_\alpha \int_{-\infty}^{+\infty} \mathrm{e}^{\alpha y} \, u_{y,1} \mathrm{d}y.$$

We have,

$$||u - u_1^N||_{L^2} = ||u - u_1 + u_1 - u_1^N||_{L^2}$$

Euler's reflection formula

We would like to quantify the approximation error:

$$\|e\|_{L^2} := \|u - u_1^N\|_{L^2} := \left\|c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_y dy - \frac{c_\alpha}{\sqrt{N}} \sum_{l=-N}^{N} e^{\alpha y_l} u_{y_l,1}\right\|_{L^2}.$$

To do so, we introduce

$$u_1 := c_\alpha \int_{-\infty}^{+\infty} \mathrm{e}^{\alpha y} \, u_{y,1} \mathrm{d} y.$$

We have,

$$\begin{aligned} \|u - u_1^N\|_{L^2} &= \|u - u_1 + u_1 - u_1^N\|_{L^2} \\ &\leqslant \underbrace{\|u - u_1\|_{L^2}}_{\text{FE error}} + \underbrace{\|u_1 - u_1^N\|_{L^2}}_{\text{quadrature error}}. \end{aligned}$$

Finite element error

We want to quantify the finite element error $||u - u_1||_{L^2}$.

Finite element error

We want to quantify the finite element error $||u - u_1||_{L^2}$.

$$u - u_1 = c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_y dy - c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_{y,1} dy$$

Finite element error

We want to quantify the finite element error $||u - u_1||_{L^2}$.

$$u - u_1 = c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_y dy - c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_{y,1} dy$$
$$= c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} (u_y - u_{y,1}) dy.$$

Finite element error

We want to quantify the finite element error $||u - u_1||_{L^2}$.

$$u - u_1 = c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_y dy - c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_{y,1} dy$$
$$= c_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} (u_y - u_{y,1}) dy.$$

Idea: We already know an estimator for the error $u_y - u_{y,1}$. Can we use it to estimate $u - u_1$?

Finite element error For a fixed y in \mathbb{R} and for a cell T of the mesh, we compute $e_{y,T}^{\mathrm{bw}} \in V^{\mathrm{bw}}(T)$ the solution to

$$\int_T e_{y,T}^{\mathrm{bw}} v_T + \mathrm{e}^{2y} \int_T \nabla e_{y,T}^{\mathrm{bw}} \cdot \nabla v_T = \int_T r_{y,T} v_T + \sum_{E \in \partial T} \int_E J_{y,E} v_T \quad \forall v_T \in V^{\mathrm{bw}}(T).$$

Finite element error

For a fixed y in \mathbb{R} and for a cell T of the mesh, we compute $e_{y,T}^{\mathrm{bw}} \in V^{\mathrm{bw}}(T)$ the solution to

$$\int_T e_{y,T}^{\mathrm{bw}} v_T + \mathrm{e}^{2y} \int_T \nabla e_{y,T}^{\mathrm{bw}} \cdot \nabla v_T = \int_T r_{y,T} v_T + \sum_{E \in \partial T} \int_E J_{y,E} v_T \quad \forall v_T \in V^{\mathrm{bw}}(T).$$

We compute

$$e_T^{\mathrm{bw}} := c_\alpha \int_{-\infty}^{+\infty} \mathrm{e}^{\alpha y} e_{y,T}^{\mathrm{bw}} \mathrm{d}y,$$

Finite element error

For a fixed y in \mathbb{R} and for a cell T of the mesh, we compute $e_{y,T}^{\mathrm{bw}} \in V^{\mathrm{bw}}(T)$ the solution to

$$\int_T e_{y,T}^{\mathrm{bw}} v_T + \mathrm{e}^{2y} \int_T \nabla e_{y,T}^{\mathrm{bw}} \cdot \nabla v_T = \int_T r_{y,T} v_T + \sum_{E \in \partial T} \int_E J_{y,E} v_T \quad \forall v_T \in V^{\mathrm{bw}}(T).$$

We compute

$$e_T^{\mathrm{bw}} := c_\alpha \int_{-\infty}^{+\infty} \mathrm{e}^{\alpha y} e_{y,T}^{\mathrm{bw}} \mathrm{d}y,$$

$$\eta_{\mathrm{bw},T} := \|e_T^{\mathrm{bw}}\|_{L^2} \quad \text{and} \quad \eta_{\mathrm{bw}}^2 := \sum_{T \in \mathcal{T}} \eta_{\mathrm{bw},T}^2.$$

Finite element error

For a fixed y in \mathbb{R} and for a cell T of the mesh, we compute $e_{y,T}^{\mathrm{bw}} \in V^{\mathrm{bw}}(T)$ the solution to

$$\int_T e_{y,T}^{\mathrm{bw}} v_T + \mathrm{e}^{2y} \int_T \nabla e_{y,T}^{\mathrm{bw}} \cdot \nabla v_T = \int_T r_{y,T} v_T + \sum_{E \in \partial T} \int_E J_{y,E} v_T \quad \forall v_T \in V^{\mathrm{bw}}(T).$$

We compute

$$e_T^{\mathrm{bw}} := c_\alpha \int_{-\infty}^{+\infty} \mathrm{e}^{\alpha y} e_{y,T}^{\mathrm{bw}} \mathrm{d}y,$$

$$\eta_{\mathrm{bw},T} := \|e_T^{\mathrm{bw}}\|_{L^2} \quad \text{and} \quad \eta_{\mathrm{bw}}^2 := \sum_{T \in \mathcal{T}} \eta_{\mathrm{bw},T}^2.$$
A posteriori error estimation

Finite element error

For a fixed y in \mathbb{R} and for a cell T of the mesh, we compute $e_{y,T}^{\mathrm{bw}} \in V^{\mathrm{bw}}(T)$ the solution to

$$\int_{T} e_{y,T}^{\mathrm{bw}} v_{T} + e^{2y} \int_{T} \nabla e_{y,T}^{\mathrm{bw}} \cdot \nabla v_{T} = \int_{T} r_{y,T} v_{T} + \sum_{E \in \partial T} \int_{E} J_{y,E} v_{T} \quad \forall v_{T} \in V^{\mathrm{bw}}(T).$$

We compute

$$e_T^{\mathrm{bw}} := c_\alpha \int_{-\infty}^{+\infty} \mathrm{e}^{\alpha y} \, e_{y,T}^{\mathrm{bw}} \mathrm{d}y,$$

$$\eta_{\mathrm{bw},T} := \|e_T^{\mathrm{bw}}\|_{L^2} \quad \text{and} \quad \eta_{\mathrm{bw}}^2 := \sum_{T \in \mathcal{T}} \eta_{\mathrm{bw},T}^2.$$

 $||u-u_1||_{L^2} \approx \eta_{\rm bw}?$

Let's try it out!

Adaptive refinement algorithm:

1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^{N}$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{u_i,T}^{\mathrm{bw},j}$,

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{m,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u_{u_l,1}^j$ into the quadrature rule to get u_1^j ,

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - ▶ for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{u_j,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u_{u_1,1}^j$ into the quadrature rule to get u_1^j ,
- 4. for each cell T of \mathcal{T}_j :
 - ▶ sum (over *l*) the functions $e_{y_l,T}^{\text{bw},j}$ into the quadrature rule to get $e_T^{\text{bw},j}$,

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - ▶ for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{u_j,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u_{u_l,1}^j$ into the quadrature rule to get u_1^j ,
- 4. for each cell T of \mathcal{T}_j :
 - sum (over l) the functions $e_{u,T}^{\text{bw},j}$ into the quadrature rule to get $e_T^{\text{bw},j}$,
 - compute the local contributions of the estimator $\eta^j_{\mathrm{bw},T} := \|e^{\mathrm{bw},j}_T\|_{L^2}$,

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - ▶ for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{u_j,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u_{u_1,1}^j$ into the quadrature rule to get u_1^j ,
- 4. for each cell T of \mathcal{T}_j :
 - sum (over *l*) the functions $e_{n,T}^{\text{bw},j}$ into the quadrature rule to get $e_T^{\text{bw},j}$,
 - compute the local contributions of the estimator $\eta^j_{\mathrm{bw},T} := \|e^{\mathrm{bw},j}_T\|_{L^2}$,
- 5. sum (over T) the local contributions $\eta^j_{\mathrm{bw},T}$ to get η^j_{bw} ,

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - ▶ for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{u_j,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u_{u_l,1}^j$ into the quadrature rule to get u_1^j ,
- 4. for each cell T of \mathcal{T}_j :
 - sum (over *l*) the functions $e_{n,T}^{\text{bw},j}$ into the quadrature rule to get $e_T^{\text{bw},j}$,
 - compute the local contributions of the estimator $\eta_{bw,T}^j := \|e_T^{bw,j}\|_{L^2}$,
- 5. sum (over T) the local contributions $\eta^j_{\mathrm{bw},T}$ to get $\eta^j_{\mathrm{bw}},$
- 6. check if $\eta_{\rm bw}^j \leqslant \varepsilon$,

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - ▶ for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{u_j,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u_{u_1,1}^j$ into the quadrature rule to get u_1^j ,
- 4. for each cell T of \mathcal{T}_j :
 - sum (over l) the functions $e_{u,T}^{\text{bw},j}$ into the quadrature rule to get $e_T^{\text{bw},j}$,
 - compute the local contributions of the estimator $\eta^j_{\mathrm{bw},T} := \|e^{\mathrm{bw},j}_T\|_{L^2}$,
- 5. sum (over T) the local contributions $\eta^j_{\mathrm{bw},T}$ to get $\eta^j_{\mathrm{bw}},$
- 6. check if $\eta_{\rm bw}^j \leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^j .

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - ▶ for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{u_j,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u_{u_1,1}^j$ into the quadrature rule to get u_1^j ,
- 4. for each cell T of \mathcal{T}_j :
 - sum (over l) the functions $e_{u,T}^{\text{bw},j}$ into the quadrature rule to get $e_T^{\text{bw},j}$,
 - compute the local contributions of the estimator $\eta^j_{\mathrm{bw},T} := \|e^{\mathrm{bw},j}_T\|_{L^2}$,
- 5. sum (over T) the local contributions $\eta^j_{\mathrm{bw},T}$ to get $\eta^j_{\mathrm{bw}},$
- 6. check if $\eta_{\rm bw}^j \leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^j .
 - X continue,

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - ▶ for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{y_l,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u^j_{y_l,1}$ into the quadrature rule to get u^j_1 ,
- 4. for each cell T of \mathcal{T}_j :
 - sum (over *l*) the functions $e_{q_l,T}^{\text{bw},j}$ into the quadrature rule to get $e_T^{\text{bw},j}$,
 - compute the local contributions of the estimator $\eta^j_{\mathrm{bw},T} := \|e^{\mathrm{bw},j}_T\|_{L^2}$,
- 5. sum (over T) the local contributions $\eta^j_{\mathrm{bw},T}$ to get $\eta^j_{\mathrm{bw}},$
- 6. check if $\eta_{\rm bw}^j \leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^j .
 - X continue,
- 7. mark the cells we need to refine (e.g. each cell T for which $\eta^j_{\mathrm{bw},T} \geqslant 0.9 \max_{T \in \mathcal{T}_j} \eta^j_{\mathrm{bw},T}$),

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - ▶ for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{u_j,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u^j_{y_l,1}$ into the quadrature rule to get u^j_1 ,
- 4. for each cell T of \mathcal{T}_j :
 - sum (over *l*) the functions $e_{q_l,T}^{\text{bw},j}$ into the quadrature rule to get $e_T^{\text{bw},j}$,
 - compute the local contributions of the estimator $\eta^j_{\mathrm{bw},T} := \|e^{\mathrm{bw},j}_T\|_{L^2}$,
- 5. sum (over T) the local contributions $\eta^j_{\mathrm{bw},T}$ to get $\eta^j_{\mathrm{bw}},$
- 6. check if $\eta_{\rm bw}^j \leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^j .
 - X continue,
- 7. mark the cells we need to refine (e.g. each cell T for which $\eta^j_{\mathrm{bw},T} \geqslant 0.9 \max_{T \in \mathcal{T}_j} \eta^j_{\mathrm{bw},T}$),
- 8. refine the mesh \mathcal{T}_j into \mathcal{T}_{j+1} ,

Let's try it out!

- 1. fix a tolerance ε , pick an initial (coarse) mesh \mathcal{T}_j (j = 0) and pick a very fine quadrature rule $\{y_l\}_{l=-N}^N$ (take N large),
- 2. for each quadrature point y_l :
 - solve the PDE on \mathcal{T}_j to get $u_{y_l,1}^j$,
 - ▶ for each cell T of \mathcal{T}_j , solve the BW equation on T to compute $e_{y_l,T}^{\mathrm{bw},j}$,
- 3. sum the functions $u^j_{y_l,1}$ into the quadrature rule to get u^j_1 ,
- 4. for each cell T of \mathcal{T}_{j} :
 - sum (over *l*) the functions $e_{q_l,T}^{\text{bw},j}$ into the quadrature rule to get $e_T^{\text{bw},j}$,
 - compute the local contributions of the estimator $\eta^j_{\mathrm{bw},T} := \|e^{\mathrm{bw},j}_T\|_{L^2}$,
- 5. sum (over T) the local contributions $\eta^j_{\mathrm{bw},T}$ to get $\eta^j_{\mathrm{bw}},$
- 6. check if $\eta_{\rm bw}^j \leqslant \varepsilon$,
 - \checkmark stop the algorithm and return u_1^j .
 - X continue,
- 7. mark the cells we need to refine (e.g. each cell T for which $\eta^{j}_{\mathrm{bw},T} \geqslant 0.9 \max_{T \in \mathcal{T}_{i}} \eta^{j}_{\mathrm{bw},T}$),
- 8. refine the mesh \mathcal{T}_j into \mathcal{T}_{j+1} ,
- 9. go back to 2. replacing j by j + 1.

Let's try it out!

Taking f = 1, we solve

$$\begin{split} (-\Delta)^{\alpha/2} u &= f \quad \text{in } \Omega \\ u &= 0 \quad \text{on } \Gamma. \end{split}$$

using finite elements and Euler's reflection formula and we estimate the error using the Bank-Weiser estimator.

Let's try it out!

Let's try it out!

Uniform refinement: Initial mesh

 $\alpha/2 = 0.5$ Adaptive refinement:

Exact error ≈ 0.1079 Linear system dim. = 25 Exact error ≈ 0.1079 Linear system dim. = 25

Let's try it out!

Uniform refinement:

3rd mesh

lpha/2 = 0.5 Adaptive refinement:

Exact error ≈ 0.0055 Linear system dim. = 1089

Exact error ≈ 0.0060 Linear system dim. = 667

Let's try it out!

Uniform refinement:

5th mesh

Table of contents

 A finite element method Example of elliptic PDE A finite element method Error estimation Numerical results

 Application to a fractional Laplacian problem The spectral fractional Laplacian How to compute the solution numerically ? A posteriori error estimation

Challenges

- Computational science/engineering:
 - Compare with other methods.

- Compare with other methods.
- Add a posteriori error estimation on the quadrature scheme.

- Compare with other methods.
- Add a posteriori error estimation on the quadrature scheme.
- Write a parallel code.

- Compare with other methods.
- Add a posteriori error estimation on the quadrature scheme.
- Write a parallel code.
- Extend the method to more complicated problems (e.g. time dependent PDEs).

- Compare with other methods.
- Add a posteriori error estimation on the quadrature scheme.
- Write a parallel code.
- Extend the method to more complicated problems (e.g. time dependent PDEs).
- Apply it to a real-world problem.

- Compare with other methods.
- Add a posteriori error estimation on the quadrature scheme.
- Write a parallel code.
- Extend the method to more complicated problems (e.g. time dependent PDEs).
- Apply it to a real-world problem.
- Mathematics:

- Compare with other methods.
- Add a posteriori error estimation on the quadrature scheme.
- Write a parallel code.
- Extend the method to more complicated problems (e.g. time dependent PDEs).
- Apply it to a real-world problem.
- Mathematics:
 - Justify the reliability of the estimator $(||e||_{L^2} \leq C\eta_{\text{bw}})$.

- Compare with other methods.
- Add a posteriori error estimation on the quadrature scheme.
- Write a parallel code.
- Extend the method to more complicated problems (e.g. time dependent PDEs).
- Apply it to a real-world problem.
- Mathematics:
 - Justify the reliability of the estimator $(||e||_{L^2} \leq C\eta_{\text{bw}}).$
 - Bound the finite element error in L² norm without extra regularity assumption on the solution (even for non-fractional problems).

- Compare with other methods.
- Add a posteriori error estimation on the quadrature scheme.
- Write a parallel code.
- Extend the method to more complicated problems (e.g. time dependent PDEs).
- Apply it to a real-world problem.
- Mathematics:
 - Justify the reliability of the estimator $(||e||_{L^2} \leq C\eta_{\text{bw}})$.
 - Bound the finite element error in L² norm without extra regularity assumption on the solution (even for non-fractional problems).
 - Prove the convergence of the adaptive scheme.

- Compare with other methods.
- Add a posteriori error estimation on the quadrature scheme.
- Write a parallel code.
- Extend the method to more complicated problems (e.g. time dependent PDEs).
- Apply it to a real-world problem.
- Mathematics:
 - Justify the reliability of the estimator $(||e||_{L^2} \leq C\eta_{\text{bw}}).$
 - Bound the finite element error in L² norm without extra regularity assumption on the solution (even for non-fractional problems).
 - Prove the convergence of the adaptive scheme.
- Become famous and get a permanent job.

Thank you for your attention!