Méthodes éléments finis et estimation d'erreur pour l'étude du ménisque.

Raphaël Bulle

Stéphane P.A. Bordas, Jack S. Hale,

Franz Chouly, Alexei Lozinski,

Olga Barrera

University of Luxembourg Université de Bourgogne Franche-Comté Oxford Brookes University

May 7, 2021

Estimation a posteriori de l'erreur due à la discrétisation par éléments finis d'équations aux dérivées partielles fractionnaires et application à la poroélasticité du ménisque.

Université de Bourgogne Franche-Comté, campus Bouloie (Besançon) Mathématiques appliquées

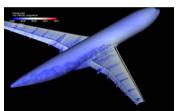
University of Luxembourg, campus Belval (Esch-sur-Alzette) Computational engineering

Introduction

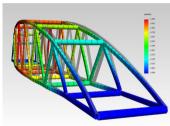
- Introduction
- Etude du ménisque
- Test de compression confinée
- Discrétisation par éléments finis
- Estimation d'erreur et raffinement adaptatif

Introduction

Les méthodes éléments finis sont utilisées dans tous les domaines de l'ingénierie:

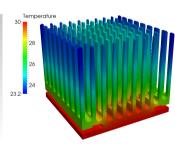


https://doi.org/10.2514/6.2014-0917



http://www.hadecgroup.com.au/

 ${\tt finite-element-analysis/attachment/12/}$

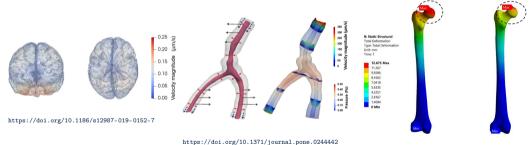


https://quickersim.com/cfdtoolbox/

heat-transfer/

Introduction

Les méthodes éléments finis sont utilisées dans tous les domaines de l'ingénierie:

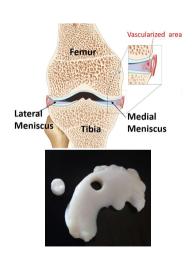


ttps://doi.org/10.13/1/journal.pone.024444

https://doi.org/10.2174/1874120701812010115

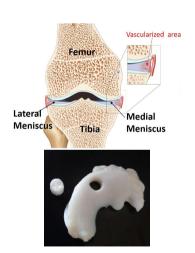
- Introduction
- Etude du ménisque
- Test de compression confinée
- Discrétisation par éléments finis
- Estimation d'erreur et raffinement adaptatif

Le ménisque joue un rôle crucial dans le fonctionnement du genou:



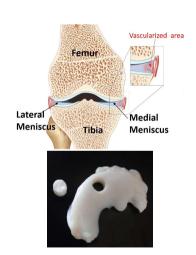
Le ménisque joue un rôle crucial dans le fonctionnement du genou:

• participe à la cohésion du genou,



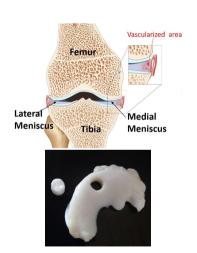
Le ménisque joue un rôle crucial dans le fonctionnement du genou:

- participe à la cohésion du genou,
- permet la lubrification de l'articulation,



Le ménisque joue un rôle crucial dans le fonctionnement du genou:

- participe à la cohésion du genou,
- permet la lubrification de l'articulation,
- soutient 45 à 75% de la charge.



La dégénérescence du ménisque a des conséquences parfois graves:

• elle touche 35% de la population,

La dégénérescence du ménisque a des conséquences parfois graves:

- elle touche 35% de la population,
- est soupçonnée d'être annonciatrice d'arthrose,

La dégénérescence du ménisque a des conséquences parfois graves:

- elle touche 35% de la population,
- est soupçonnée d'être annonciatrice d'arthrose,
- une ablation du ménisque entraîne une répartition moins homogène de la charge sur le tibia, pouvant conduire à la dégénérescence du cartilage articulaire.

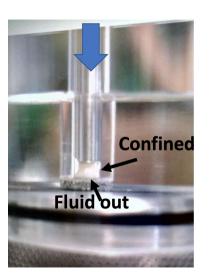
La dégénérescence du ménisque a des conséquences parfois graves:

- elle touche 35% de la population,
- est soupçonnée d'être annonciatrice d'arthrose,
- une ablation du ménisque entraîne une répartition moins homogène de la charge sur le tibia, pouvant conduire à la dégénérescence du cartilage articulaire.

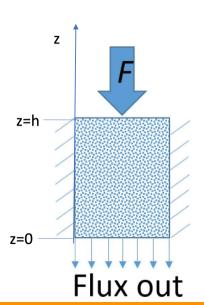
Les propriétés biomécaniques du ménisque sont encore mal comprises ce qui empêche la fabrication de prothèse satisfaisante.

- Introduction
- Etude du ménisque
- Test de compression confinée
- Discrétisation par éléments finis
- Estimation d'erreur et raffinement adaptatif

On cherche à savoir comment se réparti la pression dans les pores lorsque le ménisque est comprimé.



On cherche à savoir comment se réparti la pression dans les pores lorsque le ménisque est comprimé.

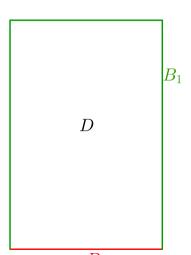


Modèle: équation de diffusion

$$p-\Delta p=f$$
 dans $D,$ $p=0$ sur $B_1,$ $\frac{\partial p}{\partial n}=0$ sur $B_2,$

оù,

$$\Delta p(x,y) = \frac{\partial^2 p(x,y)}{\partial x^2} + \frac{\partial^2 p(x,y)}{\partial y^2}.$$



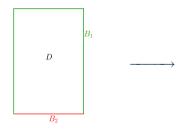
 B_2

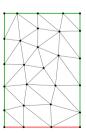
- Introduction
- Etude du ménisque
- Test de compression confinée
- Discrétisation par éléments finis
- Estimation d'erreur et raffinement adaptatif

On cherche à résoudre l'équation de diffusion numériquement.

$$p-\Delta p=f$$
 dans $D,$
$$p=0 \quad \text{sur } B_1, \qquad \qquad A\overline{p}=f$$

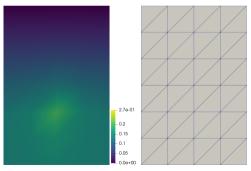
$$\frac{\partial p}{\partial n}=0 \quad \text{sur } B_2, \qquad \qquad \text{Système de taille $N\times N$.}$$





$$A\overline{p} = f, \qquad \overline{p} \simeq p.$$

On résout ce système linéaire pour obtenir une approximation \overline{p} de la pression des pores p.



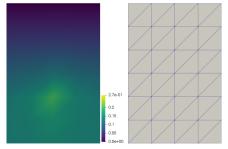
Questions:

• L'approximation \overline{p} qu'on vient de calculer est-elle (suffisamment) bonne ?

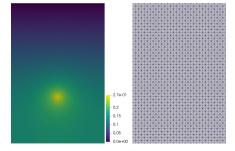
- L'approximation \overline{p} qu'on vient de calculer est-elle (suffisamment) bonne ?
- Peut-on mesurer l'erreur de discrétisation qu'on a commise ?

- L'approximation \overline{p} qu'on vient de calculer est-elle (suffisamment) bonne ?
- Peut-on mesurer l'erreur de discrétisation qu'on a commise ?
- Peut-on utiliser cette information pour améliorer notre approximation ?

- L'approximation \overline{p} qu'on vient de calculer est-elle (suffisamment) bonne ?
- Peut-on mesurer l'erreur de discrétisation qu'on a commise ?
- Peut-on utiliser cette information pour améliorer notre approximation ?



Système de taille 35×35



Système de taille 1617×1617

- Introduction
- Etude du ménisque
- Test de compression confinée
- Discrétisation par éléments finis
- Estimation d'erreur et raffinement adaptatif

Objectifs:

Objectifs:

• Déterminer un estimateur de l'erreur de discrétisation calculable.

Objectifs:

- Déterminer un estimateur de l'erreur de discrétisation calculable.
- Utiliser cet estimateur pour déterminer comment raffiner le maillage de sorte que l'erreur passe sous un seuil de tolérance.

Objectifs:

- Déterminer un estimateur de l'erreur de discrétisation calculable.
- Utiliser cet estimateur pour déterminer comment raffiner le maillage de sorte que l'erreur passe sous un seuil de tolérance.
- Implémenter un algorithme de raffinement de maillage.

Soit T un triangle du maillage. Si p_T est la solution de l'équation de diffusion et \overline{p}_T son approximation par éléments finis sur T, on note $e_T = p_T - \overline{p}_T$ l'erreur.

Soit T un triangle du maillage. Si p_T est la solution de l'équation de diffusion et \overline{p}_T son approximation par éléments finis sur T, on note $e_T=p_T-\overline{p}_T$ l'erreur. On a alors:

$$e_T - \Delta e_T = (p_T - \overline{p}_T) - \Delta (p_T - \overline{p}_T)$$

Soit T un triangle du maillage. Si p_T est la solution de l'équation de diffusion et \overline{p}_T son approximation par éléments finis sur T, on note $e_T=p_T-\overline{p}_T$ l'erreur. On a alors:

$$e_T - \Delta e_T = (p_T - \overline{p}_T) - \Delta (p_T - \overline{p}_T)$$
$$= p_T - \Delta p_T - (\overline{p}_T - \Delta \overline{p}_T)$$

Soit T un triangle du maillage. Si p_T est la solution de l'équation de diffusion et \overline{p}_T son approximation par éléments finis sur T, on note $e_T=p_T-\overline{p}_T$ l'erreur. On a alors:

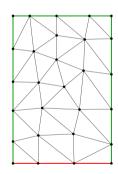
$$e_T - \Delta e_T = (p_T - \overline{p}_T) - \Delta (p_T - \overline{p}_T)$$
$$= p_T - \Delta p_T - (\overline{p}_T - \Delta \overline{p}_T)$$
$$= f_T - (\overline{p}_T - \Delta \overline{p}_T)$$

Soit T un triangle du maillage. Si p_T est la solution de l'équation de diffusion et \overline{p}_T son approximation par éléments finis sur T, on note $e_T=p_T-\overline{p}_T$ l'erreur.

La fonction e_T vérifie l'équation:

$$e_T - \Delta e_T = f_T - (\overline{p}_T - \Delta \overline{p}_T),$$

sur chaque triangle du maillage.



Idée: On discrétise par les éléments finis l'équation de l'erreur.

$$e_T - \Delta e_T = f_T - (\overline{p}_T - \Delta \overline{p}_T)$$
 \longrightarrow $A_T \overline{e}_T = g_T$

Idée: On discrétise par les éléments finis l'équation de l'erreur.

$$e_T - \Delta e_T = f_T - (\overline{p}_T - \Delta \overline{p}_T)$$
 \longrightarrow $A_T \overline{e}_T = g_T$

$$\overline{e}_T \simeq e_T = p_T - \overline{p}_T,$$

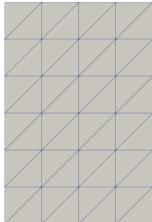
Idée: On discrétise par les éléments finis l'équation de l'erreur.

$$e_T - \Delta e_T = f_T - (\overline{p}_T - \Delta \overline{p}_T)$$
 \longrightarrow $A_T \overline{e}_T = g_T$

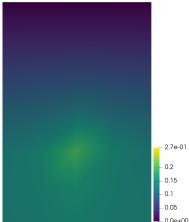
$$\overline{e}_T \simeq e_T = p_T - \overline{p}_T,$$

$$\sum_{T} \overline{e}_{T} = \overline{e} \simeq p - \overline{p}.$$

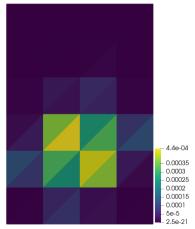
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 0: Initialisation.



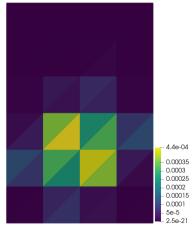
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 0: Résolution.



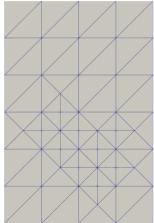
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 0: Estimation. Erreur estimée $\simeq 0.06$



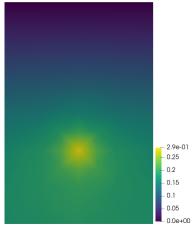
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 0: Marquage.



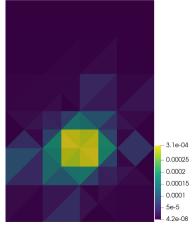
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 0: Raffinement.



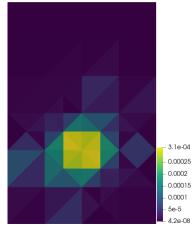
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 1: Résolution.



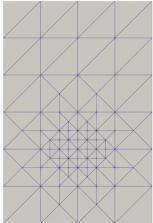
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 1: Estimation. Erreur estimée $\simeq 0.07$



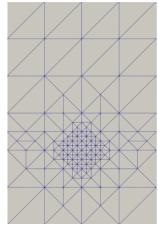
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 1: Marquage.



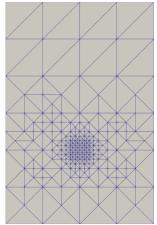
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 1: Raffinement.



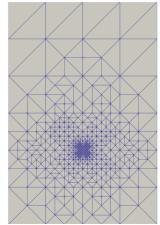
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 2: Erreur estimée $\simeq 0.04$



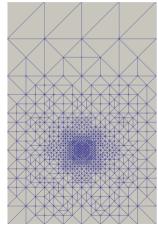
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 3: Erreur estimée $\simeq 0.03$



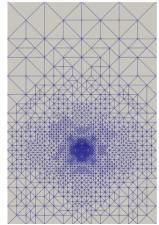
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 4: Erreur estimée $\simeq 0.02$



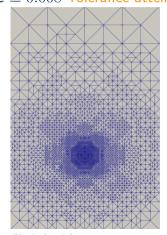
Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 5: Erreur estimée $\simeq 0.017$

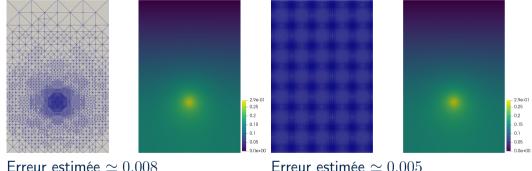


Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 6: Erreur estimée $\simeq 0.012$



Algorithme d'estimation d'erreur et de raffinement adaptatif. Tolérance: 0.01 Etape 7: Erreur estimée $\simeq 0.008$ Tolérance atteinte!





Taille système linéaire: 4129×4129

Erreur estimée $\simeq 0.005$ Taille système linéaire: 98945×98945

• Implémentation de méthodes d'estimation d'erreur et de raffinement adaptatif dans le logiciel éléments finis FEniCS.

- Implémentation de méthodes d'estimation d'erreur et de raffinement adaptatif dans le logiciel éléments finis FEniCS.
- Etude mathématique des propriétés des estimateurs.

- Implémentation de méthodes d'estimation d'erreur et de raffinement adaptatif dans le logiciel éléments finis FEniCS.
- Etude mathématique des propriétés des estimateurs.
- Intégration à des méthodes de résolution de problèmes non locaux impliquant un grand nombre de système linéaires.

- Implémentation de méthodes d'estimation d'erreur et de raffinement adaptatif dans le logiciel éléments finis FEniCS.
- Etude mathématique des propriétés des estimateurs.
- Intégration à des méthodes de résolution de problèmes non locaux impliquant un grand nombre de système linéaires.
- Application à l'étude des propriétés biomécaniques du ménisque.

Merci de votre attention!