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• A high-level way of expressing Bank–Weiser type error
estimators in DOLFIN and DOLFINX.

I Valid for Lagrange finite elements of any order k and any dimension
(1, 2 or 3).

I Can be used for a large class of elliptic problems (e.g. Stokes,
nearly-incompressible linear elasticity).

I Perfectly parallelizable.
I Cheap, we only consider solves in local spaces.
I Sharper than explicit residual estimator.

• A simple dual-weighted error estimation and marking strategy
originally proposed in [?].

I Can be used for goal-oriented adaptive mesh refinement.
I Without expensive lifting operators or higher-order global dual solutions [?].

• A proof of the reliability of the Bank–Weiser estimator in
dimension three [?].

I Without the restrictive saturation assumption [?], [?], [?].
I Completing the work of [?].
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Definition of the Bank–Weiser estimator
Toy problem setting

Let f ∈ L2(Ω), we look for u with sufficient regularity s.t.

−∆u = f in Ω, u = 0 on Γ.

In weak formulation, find u in H1
0 (Ω) such that∫

Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω).

Lagrange finite element discretization of order k, find uk in V k such that∫
Ω

∇uk · ∇vk =

∫
Ω

fvk ∀vk ∈ V k.
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Definition of the Bank–Weiser estimator
Toy problem setting

We quantify the discretization error e := uk−u using the energy
norm ηerr := ‖∇e‖Ω = ‖∇uk −∇u‖Ω.

Goal: estimate η i.e. find a computable quantity ηbw such that

ηbw ≈ ηerr.
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Definition of the Bank–Weiser estimator
The Bank–Weiser estimator

The restriction eT of e to any cell T of the mesh satisfies the
equation∫
T

∇eT ·∇vT :=

∫
T

(f−∆uk)vT +
∑

E∈∂T

1

2

∫
E

J∂nukKE vT ∀v ∈ H1
0 (T ).

On a cell T , the Bank–Weiser problem is given by:
find ebw

T in V bw
T such that∫

T

∇ebw
T ·∇vbw

T =

∫
T

(f−∆uk)vbw
T +

∑
E∈∂T

1

2

∫
E

J∂nukKE v
bw
T ∀vbw

T ∈ V bw
T .

The Bank–Weiser estimator is defined as

η2
bw :=

∑
T∈T

η2
bw,T , ηbw,T := ‖∇ebw

T ‖T .
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Definition of the Bank–Weiser estimator
The Bank–Weiser estimator

How is V bw
T defined ?

• Different definitions of V bw
T lead to different variants of the

Bank–Weiser estimator.
• General principle: let V −T ( V +

T be two finite element spaces
and

LT : V +
T −−−−! V −T ,

be the local Lagrange interpolation operator,

V bw
T := ker(LT ) =

{
v+
T ∈ V

+
T , LT (v+

T ) = 0
}
.

Bank–Weiser estimator in the FEniCS project 11/1



Definition of the Bank–Weiser estimator
The Bank–Weiser estimator

How is V bw
T defined ?

• Different definitions of V bw
T lead to different variants of the

Bank–Weiser estimator.

• General principle: let V −T ( V +
T be two finite element spaces

and
LT : V +

T −−−−! V −T ,

be the local Lagrange interpolation operator,

V bw
T := ker(LT ) =

{
v+
T ∈ V

+
T , LT (v+

T ) = 0
}
.

Bank–Weiser estimator in the FEniCS project 11/1



Definition of the Bank–Weiser estimator
The Bank–Weiser estimator

How is V bw
T defined ?

• Different definitions of V bw
T lead to different variants of the

Bank–Weiser estimator.
• General principle: let V −T ( V +

T be two finite element spaces
and

LT : V +
T −−−−! V −T ,

be the local Lagrange interpolation operator,

V bw
T := ker(LT ) =

{
v+
T ∈ V

+
T , LT (v+

T ) = 0
}
.

Bank–Weiser estimator in the FEniCS project 11/1



Definition of the Bank–Weiser estimator
The Bank–Weiser estimator

Examples:
• For V +

T = V 1
T and V −

T = V 0
T :

• For V +
T = V 2

T and V −
T = V 1

T :

• For V +
T = V 3

T and V −
T = V 2

T :

• For V +
T = V 2

T + Span{ψT } and V −
T = V 1

T :
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Definition of the Bank–Weiser estimator
Properties

• Efficiency (ηbw 6 Cηerr + h.o.t.):

I X global [?],

I X local [?], [?].

• Reliability (ηerr 6 Cηbw + h.o.t.):

I X without restriction on k, V +
T or V −

T but under a saturation assumption
[?],

I X without the saturation assumption but only for k = 1 and in dimension 2
[?],

I X without the saturation assumption but only if ψTV
k
T ⊂ V

bw
T [?],

I X without the saturation assumption, in dimension 1, 2 or 3 but only for
k = 1 [?],

I ? still an open problem in the general case (e.g. for k = 2, V +
T = V 3

T and
V −
T = V 2

T ).
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Definition of the Bank–Weiser estimator
Properties

• Asymptotic exactness (ηbw
ηerr
!
h!0

1):

I X on cartesian mesh with triangular elements when u ∈ Hk+2(Ω) [?],
I 7 on general triangular meshes [?],

I X on cartesian mesh with rectangular elements when k is odd and
u ∈ Hk+2(Ω) [?],

I 7 on cartesian mesh with rectangular elements when k is even [?],
I 7 on cartesian mesh with nonrectangular quadrilateral elements [?].

• Implementations:

I PLTMG (Fortran) [?],
I IFISS (Matlab) [?], [?],
I FEniCS (Python, C++) [?].
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Implementation
Method details

We need to compute the matrix Abw
T and vector bbw

T from∫
T

∇ebw
T ·∇vbw

T =

∫
T

(f−∆uk)vbw
T +

∑
E∈∂T

1

2

∫
E

J∂nukKE v
bw
T ∀vbw

T ∈ V bw
T .

Problem: the space V bw
T is not provided by DOLFIN.

Idea: we rely on the matrix A+
T and vector b+

T from∫
T

∇e+
T · ∇v

+
T =

∫
T

(f −∆uk)v+
T +

∑
E∈∂T

1

2

∫
E

J∂nukKE v
+
T ∀v+

T ∈ V
+
T ,

since V +
T is provided by DOLFIN and we look for a matrix N

such that:

Abw
T = N tA+

TN, and bbw
T = N tb+

T .
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Implementation
Method details

• Does such a matrix N exist ?

• If it does, how to compute it ?
Let G be (square) the matrix of LT : V +

T −−−−! V −T ⊂ V +
T ,

using SVD we have,
G = UΣV t.

We can write:

V = (ξ0
1 | · · · |ξ0

dbw
|ξ1| · · · |ξd−),

where {ξ0
1 , · · · , ξ0

dbw
} is a basis for V bw

T . Then,

N = (ξ0
1 | · · · |ξ0

dbw
).

Moreover, N does not depend on the cell T .
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Implementation
Numercial results

Adaptive finite elements for a Poisson problem:
−∆u = 0 in Ω, u = uD on Γ. Linear finite elements.
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Implementation
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Adaptive finite elements for a Poisson problem:
−∆u = 0 in Ω, u = uD on Γ. Quadratic finite elements.
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Implementation
Numercial results

Goal oriented adaptive finite elements for a Poisson problem:

−∆u = 0 in Ω, u = uD on Γ. ηerr := J(u − u1) =

∫
Ω

(u − uh)c,

where c is a smooth weight function.
The estimators are computed using the WGO method from [?].
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Implementation
Numercial results

GO AFEM for a linear elasticity problem:
we used a technique from [?] to compute the estimators. The goal func-

tional is defined by J(u2, p1) :=

∫
Γ

u2 · nc.
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Perspectives

• Adapt our algorithm to other types of finite elements.

• Find a criterion to determine the best couple of spaces
(V +

T , V
−
T ) for a given problem.

• Prove the reliability of Bank–Weiser estimators in the general
case.
• Investigate performance of Bank–Weiser estimators for error

estimation in L2 norm.
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