Hierarchical A Posteriori Error Estimation of Bank–Weiser Type in the FEniCS Project

Raphaël Bulle

Stéphane P.A. Bordas, Jack S. Hale,

Franz Chouly, Alexei Lozinski

University of Luxembourg Université de Bourgogne Franche-Comté

October 28, 2021

I would like to acknowledge the support of the ASSIST research project of the University of Luxembourg. This presentation has been prepared in the framework of the DRIVEN project funded by the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No. 811099.

Table of contents

• A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.

- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).

- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).

- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).
 - Perfectly parallelizable.

- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).
 - Perfectly parallelizable.
 - Cheap, we only consider solves in local spaces.

- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).
 - Perfectly parallelizable.
 - Cheap, we only consider solves in local spaces.
 - Sharper than explicit residual estimator.

- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).
 - Perfectly parallelizable.
 - Cheap, we only consider solves in local spaces.
 - Sharper than explicit residual estimator.
- A simple dual-weighted error estimation and marking strategy originally proposed in [?].

- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).
 - Perfectly parallelizable.
 - Cheap, we only consider solves in local spaces.
 - Sharper than explicit residual estimator.
- A simple dual-weighted error estimation and marking strategy originally proposed in [?].
 - Can be used for goal-oriented adaptive mesh refinement.

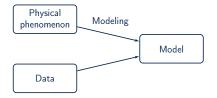
- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).
 - Perfectly parallelizable.
 - Cheap, we only consider solves in local spaces.
 - Sharper than explicit residual estimator.
- A simple dual-weighted error estimation and marking strategy originally proposed in [?].
 - Can be used for goal-oriented adaptive mesh refinement.
 - Without expensive lifting operators or higher-order global dual solutions [?].

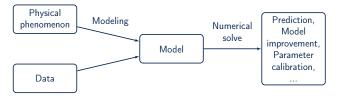
- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).
 - Perfectly parallelizable.
 - Cheap, we only consider solves in local spaces.
 - Sharper than explicit residual estimator.
- A simple dual-weighted error estimation and marking strategy originally proposed in [?].
 - Can be used for goal-oriented adaptive mesh refinement.
 - Without expensive lifting operators or higher-order global dual solutions [?].
- A proof of the reliability of the Bank–Weiser estimator in dimension three [?].

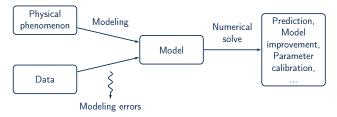
- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).
 - Perfectly parallelizable.
 - Cheap, we only consider solves in local spaces.
 - Sharper than explicit residual estimator.
- A simple dual-weighted error estimation and marking strategy originally proposed in [?].
 - Can be used for goal-oriented adaptive mesh refinement.
 - Without expensive lifting operators or higher-order global dual solutions [?].
- A proof of the reliability of the Bank–Weiser estimator in dimension three [?].
 - Without the restrictive saturation assumption [?], [?], [?].

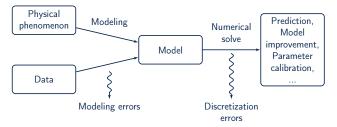
- A high-level way of expressing Bank–Weiser type error estimators in DOLFIN and DOLFINX.
 - Valid for Lagrange finite elements of any order k and any dimension (1, 2 or 3).
 - Can be used for a large class of elliptic problems (e.g. Stokes, nearly-incompressible linear elasticity).
 - Perfectly parallelizable.
 - Cheap, we only consider solves in local spaces.
 - Sharper than explicit residual estimator.
- A simple dual-weighted error estimation and marking strategy originally proposed in [?].
 - Can be used for goal-oriented adaptive mesh refinement.
 - Without expensive lifting operators or higher-order global dual solutions [?].
- A proof of the reliability of the Bank–Weiser estimator in dimension three [?].
 - Without the restrictive saturation assumption [?], [?], [?].
 - Completing the work of [?].

Table of contents









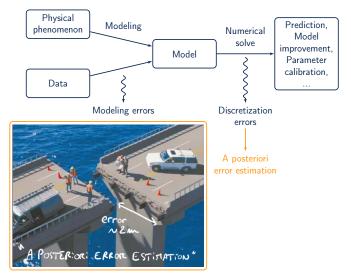
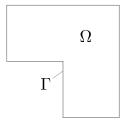


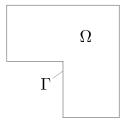
Table of contents

Toy problem setting



Let $f \in L^2(\Omega)$, we look for u with sufficient regularity s.t. $-\Delta u = f \text{ in } \Omega, \qquad u = 0 \text{ on } \Gamma.$

Toy problem setting



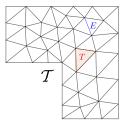
Let $f \in L^2(\Omega)$, we look for u with sufficient regularity s.t.

 $-\Delta u = f \text{ in } \Omega, \qquad u = 0 \text{ on } \Gamma.$

In weak formulation, find u in $H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v \quad \forall v \in H_0^1(\Omega).$$

Toy problem setting



Let $f \in L^2(\Omega)$, we look for u with sufficient regularity s.t.

 $-\Delta u = f \text{ in } \Omega, \qquad u = 0 \text{ on } \Gamma.$

In weak formulation, find u in $H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v \quad \forall v \in H_0^1(\Omega).$$

Lagrange finite element discretization of order k, find u_k in V^k such that

$$\int_{\Omega} \nabla u_k \cdot \nabla v_k = \int_{\Omega} f v_k \quad \forall v_k \in V^k.$$

Bank-Weiser estimator in the FEniCS project

Toy problem setting

We quantify the discretization error $e := u_k - u$ using the energy norm $\eta_{\text{err}} := \|\nabla e\|_{\Omega} = \|\nabla u_k - \nabla u\|_{\Omega}$.

Toy problem setting

We quantify the discretization error $e := u_k - u$ using the energy norm $\eta_{\text{err}} := \|\nabla e\|_{\Omega} = \|\nabla u_k - \nabla u\|_{\Omega}$.

Goal: estimate η i.e. find a computable quantity $\eta_{\rm bw}$ such that

 $\eta_{\rm bw} \approx \eta_{\rm err}$.

Table of contents

The Bank–Weiser estimator

The restriction e_T of e to any cell T of the mesh satisfies the equation

$$\int_T \nabla e_T \cdot \nabla v_T := \int_T (f - \Delta u_k) v_T + \sum_{E \in \partial T} \frac{1}{2} \int_E \left[\!\!\left[\partial_n u_k\right]\!\!\right]_E v_T \quad \forall v \in H^1_0(T).$$

The Bank-Weiser estimator

The restriction e_T of e to any cell T of the mesh satisfies the equation

$$\int_T \nabla e_T \cdot \nabla v_T := \int_T (f - \Delta u_k) v_T + \sum_{E \in \partial T} \frac{1}{2} \int_E \left[\!\!\left[\partial_n u_k\right]\!\!\right]_E v_T \quad \forall v \in H^1_0(T).$$

On a cell T, the Bank–Weiser problem is given by: find $e_T^{\rm bw}$ in $V_T^{\rm bw}$ such that

$$\int_T \nabla e_T^{\mathrm{bw}} \cdot \nabla v_T^{\mathrm{bw}} = \int_T (f - \Delta u_k) v_T^{\mathrm{bw}} + \sum_{E \in \partial T} \frac{1}{2} \int_E \left[\!\!\left[\partial_n u_k \right]\!\!\right]_E v_T^{\mathrm{bw}} \quad \forall v_T^{\mathrm{bw}} \in V_T^{\mathrm{bw}}.$$

The Bank-Weiser estimator

The restriction e_T of e to any cell T of the mesh satisfies the equation

$$\int_T \nabla e_T \cdot \nabla v_T := \int_T (f - \Delta u_k) v_T + \sum_{E \in \partial T} \frac{1}{2} \int_E \left[\!\!\left[\partial_n u_k\right]\!\!\right]_E v_T \quad \forall v \in H^1_0(T).$$

On a cell T, the Bank–Weiser problem is given by: find $e_T^{\rm bw}$ in $V_T^{\rm bw}$ such that

$$\int_{T} \nabla e_{T}^{\mathrm{bw}} \cdot \nabla v_{T}^{\mathrm{bw}} = \int_{T} (f - \Delta u_{k}) v_{T}^{\mathrm{bw}} + \sum_{E \in \partial T} \frac{1}{2} \int_{E} \left[\!\left[\partial_{n} u_{k}\right]\!\right]_{E} v_{T}^{\mathrm{bw}} \quad \forall v_{T}^{\mathrm{bw}} \in V_{T}^{\mathrm{bw}}.$$

The Bank-Weiser estimator is defined as

$$\eta_{\mathrm{bw}}^2 := \sum_{T \in \mathcal{T}} \eta_{\mathrm{bw},T}^2, \quad \eta_{\mathrm{bw},T} := \|\nabla e_T^{\mathrm{bw}}\|_T.$$

The Bank-Weiser estimator

How is V_T^{bw} defined ?

The Bank–Weiser estimator

How is $V_T^{\rm bw}$ defined ?

• Different definitions of $V_T^{\rm bw}$ lead to different variants of the Bank–Weiser estimator.

The Bank–Weiser estimator

How is V_T^{bw} defined ?

- Different definitions of $V_T^{\rm bw}$ lead to different variants of the Bank–Weiser estimator.
- General principle: let $V_T^- \subsetneq V_T^+$ be two finite element spaces and

$$\mathcal{L}_T: V_T^+ \longrightarrow V_T^-,$$

be the local Lagrange interpolation operator,

$$V_T^{\text{bw}} := \ker(\mathcal{L}_T) = \{ v_T^+ \in V_T^+, \ \mathcal{L}_T(v_T^+) = 0 \}.$$

The Bank-Weiser estimator

Examples:

• For
$$V_T^+ = V_T^1$$
 and $V_T^- = V_T^0$

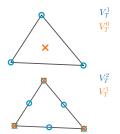


The Bank–Weiser estimator

Examples:

• For
$$V_T^+ = V_T^1$$
 and $V_T^- = V_T^0$:

• For
$$V_T^+ = V_T^2$$
 and $V_T^- = V_T^1$:



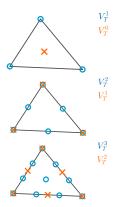
The Bank-Weiser estimator

Examples:

• For
$$V_T^+ = V_T^1$$
 and $V_T^- = V_T^0$:

• For
$$V_T^+ = V_T^2$$
 and $V_T^- = V_T^1$:

• For
$$V_T^+ = V_T^3$$
 and $V_T^- = V_T^2$:



The Bank-Weiser estimator

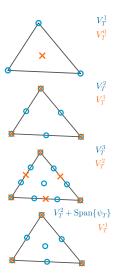
Examples:

• For
$$V_T^+ = V_T^1$$
 and $V_T^- = V_T^0$

• For
$$V_T^+ = V_T^2$$
 and $V_T^- = V_T^1$:

• For
$$V_T^+ = V_T^3$$
 and $V_T^- = V_T^2$:

• For
$$V_T^+ = V_T^2 + \operatorname{Span}\{\psi_T\}$$
 and $V_T^- = V_T^1$



Bank-Weiser estimator in the FEniCS project

Properties

• Efficiency $(\eta_{\rm bw} \leqslant C\eta_{\rm err} + {\rm h.o.t.})$:

Properties

Efficiency (η_{bw} ≤ Cη_{err} + h.o.t.):
 ✓ global [?],

- Efficiency $(\eta_{\rm bw} \leqslant C\eta_{\rm err} + {\rm h.o.t.})$:
 - global [?],
 local [?], [?].

- Efficiency $(\eta_{\rm bw} \leq C\eta_{\rm err} + {\rm h.o.t.})$:
 - ► ✓ global [?],
 - ► ✓ local [?], [?].
- Reliability ($\eta_{\rm err} \leqslant C \eta_{\rm bw} + {\rm h.o.t.}$):

- Efficiency $(\eta_{\rm bw} \leqslant C\eta_{\rm err} + {\rm h.o.t.})$:
 - global [?],
 - Iocal [?], [?].
- Reliability ($\eta_{\rm err} \leqslant C \eta_{\rm bw} + {\rm h.o.t.}$):
 - \checkmark without restriction on k, V_T^+ or V_T^- but under a saturation assumption [?],

- Efficiency $(\eta_{\rm bw} \leqslant C\eta_{\rm err} + {\rm h.o.t.})$:
 - global [?],
 - Iocal [?], [?].
- Reliability ($\eta_{\rm err} \leqslant C \eta_{\rm bw} + {\rm h.o.t.}$):
 - \bigvee without restriction on k, V_T^+ or V_T^- but under a saturation assumption [?],
 - \checkmark without the saturation assumption but only for k = 1 and in dimension 2 [?],

- Efficiency $(\eta_{\rm bw} \leqslant C\eta_{\rm err} + {\rm h.o.t.})$:
 - global [?],
 - Iocal [?], [?].
- Reliability ($\eta_{\rm err} \leqslant C \eta_{\rm bw} + {\rm h.o.t.}$):
 - \bigvee without restriction on k, V_T^+ or V_T^- but under a saturation assumption [?],
 - without the saturation assumption but only for k = 1 and in dimension 2 [?],
 - \checkmark without the saturation assumption but only if $\psi_T V_T^k \subset V_T^{\mathrm{bw}}$ [?],

- Efficiency $(\eta_{\rm bw} \leqslant C\eta_{\rm err} + {\rm h.o.t.})$:
 - global [?],
 - ► ✓ local [?], [?].
- Reliability ($\eta_{\rm err} \leqslant C \eta_{\rm bw} + {\rm h.o.t.}$):
 - \bigvee without restriction on k, V_T^+ or V_T^- but under a saturation assumption [?],
 - \checkmark without the saturation assumption but only for k = 1 and in dimension 2 [?],
 - \checkmark without the saturation assumption but only if $\psi_T V_T^k \subset V_T^{\text{bw}}$ [?],
 - without the saturation assumption, in dimension 1, 2 or 3 but only for k = 1 [?],

Properties

- Efficiency $(\eta_{\rm bw} \leqslant C\eta_{\rm err} + {\rm h.o.t.})$:
 - global [?],
 - ► ✓ local [?], [?].
- Reliability ($\eta_{\rm err} \leqslant C \eta_{\rm bw} + {\rm h.o.t.}$):
 - \bigvee without restriction on k, V_T^+ or V_T^- but under a saturation assumption [?],
 - without the saturation assumption but only for k = 1 and in dimension 2 [?],
 - \checkmark without the saturation assumption but only if $\psi_T V_T^k \subset V_T^{\text{bw}}$ [?],
 - without the saturation assumption, in dimension 1, 2 or 3 but only for k = 1 [?],

still an open problem in the general case (e.g. for k = 2, $V_T^+ = V_T^3$ and $V_T^- = V_T^2$).

Properties

• Asymptotic exactness $\begin{pmatrix} \eta_{\rm bw} \\ \eta_{\rm err} \end{pmatrix} \xrightarrow[h \to 0]{} 1$:

Definition of the Bank–Weiser estimator Properties

- Asymptotic exactness $\left(\frac{\eta_{\text{bw}}}{\eta_{\text{err}}} \xrightarrow{h \to 0} 1\right)$:
 - \checkmark on cartesian mesh with triangular elements when $u \in H^{k+2}(\Omega)$ [?],

- Asymptotic exactness $\begin{pmatrix} \eta_{\rm bw} \\ \eta_{\rm err} \end{pmatrix} \xrightarrow[h \to 0]{} 1$:
 - ✓ on cartesian mesh with triangular elements when u ∈ H^{k+2}(Ω) [?],
 ✓ on general triangular meshes [?],

- Asymptotic exactness $\begin{pmatrix} \eta_{\text{bw}} \\ \eta_{\text{err}} \end{pmatrix} \xrightarrow{h \to 0} 1$:
 - \checkmark on cartesian mesh with triangular elements when $u \in H^{k+2}(\Omega)$ [?], • \checkmark on general triangular meshes [?],
 - on cartesian mesh with rectangular elements when k is odd and $u \in H^{k+2}(\Omega)$ [?],

- Asymptotic exactness $\begin{pmatrix} \eta_{\text{bw}} \\ \eta_{\text{err}} \end{pmatrix} \xrightarrow{h \to 0} 1$:
 - \checkmark on cartesian mesh with triangular elements when $u \in H^{k+2}(\Omega)$ [?], • \checkmark on general triangular meshes [?],
 - on cartesian mesh with rectangular elements when k is odd and $u \in H^{k+2}(\Omega)$ [?],
 - X on cartesian mesh with rectangular elements when k is even [?],

- Asymptotic exactness $\begin{pmatrix} \eta_{\text{bw}} \\ \eta_{\text{err}} \end{pmatrix} \rightarrow 1$:
 - ✓ on cartesian mesh with triangular elements when u ∈ H^{k+2}(Ω) [?],
 ✓ on general triangular meshes [?].
 - on cartesian mesh with rectangular elements when k is odd and $u \in H^{k+2}(\Omega)$ [?],
 - X on cartesian mesh with rectangular elements when k is even [?],
 - ► X on cartesian mesh with nonrectangular quadrilateral elements [?].

- Asymptotic exactness $\begin{pmatrix} \eta_{\text{bw}} \\ \eta_{\text{err}} \end{pmatrix} \rightarrow 1$:
 - \checkmark on cartesian mesh with triangular elements when $u \in H^{k+2}(\Omega)$ [?], • \checkmark on general triangular meshes [?],
 - on cartesian mesh with rectangular elements when k is odd and $u \in H^{k+2}(\Omega)$ [?],
 - X on cartesian mesh with rectangular elements when k is even [?],
 - ► X on cartesian mesh with nonrectangular quadrilateral elements [?].
- Implementations:

- Asymptotic exactness $\begin{pmatrix} \eta_{\rm bw} \\ \eta_{\rm err} \end{pmatrix} \xrightarrow[h \to 0]{} 1$:
 - \checkmark on cartesian mesh with triangular elements when $u \in H^{k+2}(\Omega)$ [?], • \checkmark on general triangular meshes [?],
 - on cartesian mesh with rectangular elements when k is odd and $u \in H^{k+2}(\Omega)$ [?],
 - X on cartesian mesh with rectangular elements when k is even [?],
 - ▶ X on cartesian mesh with nonrectangular quadrilateral elements [?].
- Implementations:
 - PLTMG (Fortran) [?],

Properties

- Asymptotic exactness $\begin{pmatrix} \eta_{\rm bw} \\ \eta_{\rm err} \end{pmatrix} \xrightarrow[h \to 0]{} 1$:
 - on cartesian mesh with triangular elements when $u \in H^{k+2}(\Omega)$ [?],
 - X on general triangular meshes [?],
 - on cartesian mesh with rectangular elements when k is odd and $u \in H^{k+2}(\Omega)$ [?],
 - X on cartesian mesh with rectangular elements when k is even [?],
 - ▶ X on cartesian mesh with nonrectangular quadrilateral elements [?].

Implementations:

- PLTMG (Fortran) [?],
- IFISS (Matlab) [?], [?],

Properties

- Asymptotic exactness $\begin{pmatrix} \eta_{\rm bw} \\ \eta_{\rm err} \end{pmatrix} \xrightarrow[h \to 0]{} 1$:
 - \checkmark on cartesian mesh with triangular elements when $u \in H^{k+2}(\Omega)$ [?],
 - ► X on general triangular meshes [?],
 - on cartesian mesh with rectangular elements when k is odd and $u \in H^{k+2}(\Omega)$ [?],
 - X on cartesian mesh with rectangular elements when k is even [?],
 - ▶ X on cartesian mesh with nonrectangular quadrilateral elements [?].

Implementations:

- PLTMG (Fortran) [?],
- IFISS (Matlab) [?], [?],
- FEniCS (Python, C++) [?].

Table of contents

Method details

We need to compute the matrix A_T^{bw} and vector b_T^{bw} from

$$\int_{T} \nabla e_{T}^{\mathrm{bw}} \cdot \nabla v_{T}^{\mathrm{bw}} = \int_{T} (f - \Delta u_{k}) v_{T}^{\mathrm{bw}} + \sum_{E \in \partial T} \frac{1}{2} \int_{E} \left[\! \left[\partial_{n} u_{k} \right] \! \right]_{E} v_{T}^{\mathrm{bw}} \quad \forall v_{T}^{\mathrm{bw}} \in V_{T}^{\mathrm{bw}}.$$

Method details

We need to compute the matrix A_T^{bw} and vector b_T^{bw} from

$$\int_{T} \nabla e_{T}^{\mathrm{bw}} \cdot \nabla v_{T}^{\mathrm{bw}} = \int_{T} (f - \Delta u_{k}) v_{T}^{\mathrm{bw}} + \sum_{E \in \partial T} \frac{1}{2} \int_{E} \left[\!\!\left[\partial_{n} u_{k}\right]\!\!\right]_{E} v_{T}^{\mathrm{bw}} \quad \forall v_{T}^{\mathrm{bw}} \in V_{T}^{\mathrm{bw}}.$$

Problem: the space V_T^{bw} is not provided by DOLFIN.

Method details

We need to compute the matrix A_T^{bw} and vector b_T^{bw} from

$$\int_{T} \nabla e_{T}^{\mathrm{bw}} \cdot \nabla v_{T}^{\mathrm{bw}} = \int_{T} (f - \Delta u_{k}) v_{T}^{\mathrm{bw}} + \sum_{E \in \partial T} \frac{1}{2} \int_{E} \left[\! \left[\partial_{n} u_{k} \right] \! \right]_{E} v_{T}^{\mathrm{bw}} \quad \forall v_{T}^{\mathrm{bw}} \in V_{T}^{\mathrm{bw}}.$$

Problem: the space V_T^{bw} is not provided by DOLFIN. Idea: we rely on the matrix A_T^+ and vector b_T^+ from

$$\int_T \nabla e_T^+ \cdot \nabla v_T^+ = \int_T (f - \Delta u_k) v_T^+ + \sum_{E \in \partial T} \frac{1}{2} \int_E \left[\left[\partial_n u_k \right] \right]_E v_T^+ \quad \forall v_T^+ \in V_T^+,$$

since $V_{T}^{\mathrm{+}}$ is provided by DOLFIN

Method details

We need to compute the matrix $A_T^{\rm bw}$ and vector $b_T^{\rm bw}$ from

$$\int_{T} \nabla e_{T}^{\mathrm{bw}} \cdot \nabla v_{T}^{\mathrm{bw}} = \int_{T} (f - \Delta u_{k}) v_{T}^{\mathrm{bw}} + \sum_{E \in \partial T} \frac{1}{2} \int_{E} \left[\left[\partial_{n} u_{k} \right] \right]_{E} v_{T}^{\mathrm{bw}} \quad \forall v_{T}^{\mathrm{bw}} \in V_{T}^{\mathrm{bw}}.$$

Problem: the space V_T^{bw} is not provided by DOLFIN. Idea: we rely on the matrix A_T^+ and vector b_T^+ from

$$\int_T \nabla e_T^+ \cdot \nabla v_T^+ = \int_T (f - \Delta u_k) v_T^+ + \sum_{E \in \partial T} \frac{1}{2} \int_E \left[\left[\partial_n u_k \right] \right]_E v_T^+ \quad \forall v_T^+ \in V_T^+,$$

since V_T^+ is provided by DOLFIN and we look for a matrix N such that:

$$A_T^{\mathrm{bw}} = N^{\mathsf{t}} A_T^+ N$$
, and $b_T^{\mathrm{bw}} = N^{\mathsf{t}} b_T^+$.

Method details

• Does such a matrix N exist ?

- Does such a matrix N exist ?
- If it does, how to compute it ?

Method details

- Does such a matrix N exist ?
- If it does, how to compute it ?

Let G be (square) the matrix of $\mathcal{L}_T : V_T^+ \longrightarrow V_T^- \subset V_T^+$, using SVD we have,

 $G = U\Sigma V^{\mathsf{t}}.$

Method details

- Does such a matrix N exist ?
- If it does, how to compute it ?

Let G be (square) the matrix of $\mathcal{L}_T : V_T^+ \longrightarrow V_T^- \subset V_T^+$, using SVD we have,

$$G = U\Sigma V^{\mathsf{t}}.$$

We can write:

$$V = (\xi_1^0 | \cdots | \xi_{d_{\rm bw}}^0 | \xi_1 | \cdots | \xi_{d_-}),$$

where $\{\xi_1^0, \cdots, \xi_{d_{\mathrm{bw}}}^0\}$ is a basis for V_T^{bw} .

Method details

- Does such a matrix N exist ?
- If it does, how to compute it ?

Let G be (square) the matrix of $\mathcal{L}_T : V_T^+ \longrightarrow V_T^- \subset V_T^+$, using SVD we have,

$$G = U\Sigma V^{\mathsf{t}}.$$

We can write:

$$V = (\xi_1^0 | \cdots | \xi_{d_{\mathrm{bw}}}^0 | \xi_1 | \cdots | \xi_{d_-}),$$

where $\{\xi_1^0, \cdots, \xi_{d_{\mathrm{bw}}}^0\}$ is a basis for V_T^{bw} . Then, $N = (\xi_1^0 | \cdots | \xi_{d_{\mathrm{bw}}}^0).$

Method details

- Does such a matrix N exist ?
- If it does, how to compute it ?

Let G be (square) the matrix of $\mathcal{L}_T : V_T^+ \longrightarrow V_T^- \subset V_T^+$, using SVD we have,

$$G = U\Sigma V^{\mathsf{t}}.$$

We can write:

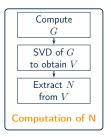
$$V = (\xi_1^0 | \cdots | \xi_{d_{\mathrm{bw}}}^0 | \xi_1 | \cdots | \xi_{d_-}),$$

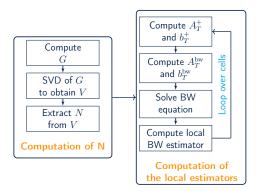
where $\{\xi_1^0,\cdots,\xi_{d_{\mathrm{bw}}}^0\}$ is a basis for $V_T^{\mathrm{bw}}.$ Then,

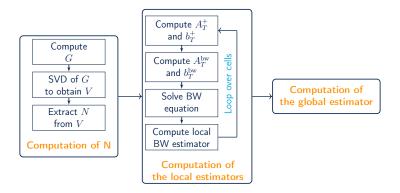
$$N = (\xi_1^0 | \cdots | \xi_{d_{\mathrm{bw}}}^0).$$

Moreover, N does not depend on the cell T.

Bank-Weiser estimator in the FEniCS project







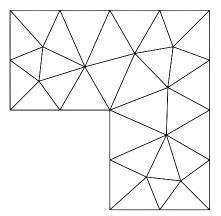
```
Method details
    def estimate(u_h):
        mesh = u_h.function_space().mesh()
        element_f = FiniteElement("DG", triangle, 2)
        element_g = FiniteElement("DG", triangle, 1)
        N = fenics_error_estimation.create_interpolation(element_f, element_g)
        V_f = FunctionSpace(mesh, element_f)
        e = TrialFunction(V f)
        v = \text{TestFunction}(V f)
        f = Constant(0.0)
        bcs = DirichletBC(V f. Constant(0,0), "on boundary", "geometric")
        n = FacetNormal(mesh)
        a_e = inner(grad(e), grad(v))*dx
        L = inner(f + div(grad(u h)), v)*dx + 
                inner(jump(grad(u_h), -n), avg(v))*dS
        e_h = fenics_error_estimation.estimate(a_e, L_e, N, bcs)
        error = norm(e_h, "H10")
        V = FunctionSpace(mesh, "DG", 0)
        v = \text{TestFunction}(V e)
        eta_h = Function(V_e, name="eta h")
        eta = assemble(inner(inner(grad(e h), grad(e h)), v)*dx)
        eta_h.vector()[:] = eta
        return eta h
```

Table of contents

Numercial results

Adaptive finite elements for a Poisson problem:

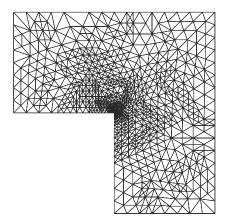
 $-\Delta u = 0$ in Ω , $u = u_D$ on Γ . Linear finite elements.



Numercial results

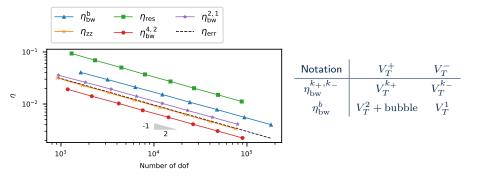
Adaptive finite elements for a Poisson problem:

 $-\Delta u = 0$ in Ω , $u = u_D$ on Γ . Linear finite elements.



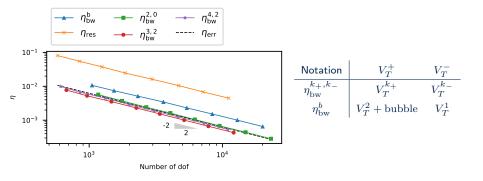
Numercial results

Adaptive finite elements for a Poisson problem: $-\Delta u = 0$ in Ω , $u = u_D$ on Γ . Linear finite elements.



Numercial results

Adaptive finite elements for a Poisson problem: $-\Delta u = 0$ in Ω , $u = u_D$ on Γ . Quadratic finite elements.

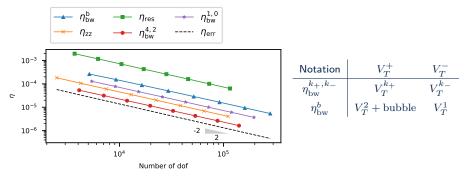


Numercial results

Goal oriented adaptive finite elements for a Poisson problem:

 $-\Delta u = 0$ in Ω , $u = u_D$ on Γ . $\eta_{\text{err}} := J(u - u_1) = \int_{\Omega} (u - u_h)c$, where c is a smooth weight function.

The estimators are computed using the WGO method from [?].

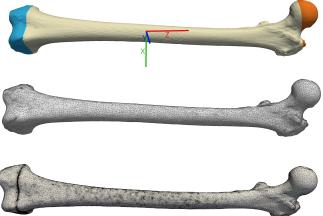


Numercial results

GO AFEM for a linear elasticity problem:

we used a technique from [?] to compute the estimators. The goal func-

tional is defined by $J(\mathbf{u}_2, p_1) := \int_{\Gamma} \mathbf{u}_2 \cdot \mathbf{n}c.$



Numercial results

GO AFEM for a linear elasticity problem:

we used a technique from [?] to compute the estimators. The goal func-

tional is defined by $J(\mathbf{u_2}, p_1) := \int_{\Gamma} \mathbf{u_2} \cdot \mathbf{n}c.$

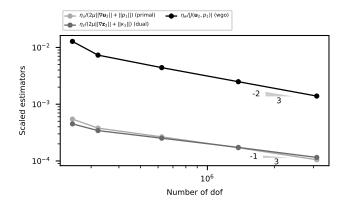


Table of contents

• Adapt our algorithm to other types of finite elements.

- Adapt our algorithm to other types of finite elements.
- Find a criterion to determine the best couple of spaces (V_T^+,V_T^-) for a given problem.

- Adapt our algorithm to other types of finite elements.
- Find a criterion to determine the best couple of spaces (V_T^+,V_T^-) for a given problem.
- Prove the reliability of Bank–Weiser estimators in the general case.

- Adapt our algorithm to other types of finite elements.
- Find a criterion to determine the best couple of spaces (V_T^+,V_T^-) for a given problem.
- Prove the reliability of Bank–Weiser estimators in the general case.
- Investigate performance of Bank–Weiser estimators for error estimation in $L^2\,\,{\rm norm}.$

Thank you for your attention!

I would like to acknowledge the support of the ASSIST research project of the University of Luxembourg. This presentation has been prepared in the framework of the DRIVEN project funded by the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No. 811099. Bank-Weiser estimator in the FEniCS project