Controlling error in multi-level approximations of stochastic PDEs

Raphaël Bulle^{1,2} Franz Chouly², Alexei Lozinski² Stéphane P.A. Bordas¹, Jack S. Hale¹

University of Luxembourg ¹ Université de Bourgogne Franche-Comté ²

April 10, 2019

The ASSIST project has received funding from the University of Luxembourg Internal Research Project scheme. The DRIVEN project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 811099.

Table of contents

- Model problem introduction
- First approach: standard Monte-Carlo
- First approach: error control
- Second approach: multi-level Monte-Carlo
- Second approach: error control
- MLMC Algorithm
- Future work

Table of contents

• Model problem introduction

- First approach: standard Monte-Carlo
- First approach: error control
- Second approach: multi-level Monte-Carlo
- Second approach: error control
- MLMC Algorithm
- Future work

We are interested in a model problem for groundwater flow modelling in porous media.

Let D be a physical domain (of dimension d), f a deterministic data function and a a Matérn Gaussian random field defined on $\Omega \times D$ where (Ω, \mathcal{A}, P) is some probability space.

Darcy problem [Eigel et al., 2016] Almost everywhere on Ω , $-\operatorname{div}(\exp(a)\nabla u) = f \text{ in } D,$ $u = 0 \text{ on } \partial D.$ (Darcy)

Recalls on Gaussian random fields

Gaussian random field

Let (E,\mathcal{B},m) be a measure space. A real valued Gaussian random field G on E is a function

$$\begin{array}{rcccc} G: & \Omega \times E & \longrightarrow & \mathbb{R} \\ & (\omega, e) & \longmapsto & G_{\omega}(e), \end{array}$$

such that for any finite set $\{e_1, \cdots, e_n\} \subset E$, the vector $(G(e_1), \cdots, G(e_n))$, is a Gaussian random vector. A Gaussian random field is charaterized by μ and Σ resp. its mean and autocovariance functions $\mu: E \longrightarrow \mathbb{R}$

$$e \longmapsto \mathbb{E}[G(e)],$$

$$\Sigma: E \times E \longrightarrow \mathbb{R}$$

$$(e, e') \longmapsto \mathbb{E}[(G(e) - \mu(e))(G(e') - \mu(e'))].$$

Recalls on Gaussian random fields

Gaussian white noise

We call Gaussian white noise on \mathbb{R}^d the gaussian random field

$$\dot{\mathcal{W}}: \Omega \times L^2(\mathbb{R}^d) \longrightarrow \mathbb{R},$$

with zero mean and autocovariance function defined by

$$\Sigma_{\dot{W}}: L^{2}(\mathbb{R}^{d}) \times L^{2}(\mathbb{R}^{d}) \longrightarrow \mathbb{R}$$
$$(v, w) \longmapsto \int_{\mathbb{R}^{d}} vw \, \mathrm{d}x.$$

Recalls on Gaussian random fields

Matérn random fields

Let us denote Γ the Euler gamma function and \mathcal{K}_{ν} the Bessel's modified function of the second kind of parameter ν . A Matérn random field on D is a particular Gaussian random field (on D) with autocovariance function \mathcal{C} defined for x, y in D by

$$\mathcal{C}(x,y) = \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (\kappa r)^{\nu} \mathcal{K}_{\nu}(\kappa r),$$

where,

$$r := |x - y|_2, \quad \kappa := \frac{\sqrt{8\nu}}{\lambda},$$

and the non-negative real parameters σ^2 , ν and λ denote resp. the marginal variance, smoothness and correlation length of the field.

Weak form and quantity of interest

Darcy problem [Eigel et al., 2016]

Almost everywhere on Ω ,

$$\begin{aligned} -\operatorname{div}(\exp(a)\nabla u) &= f & \text{in } D, \\ u &= 0 & \text{on } \partial D. \end{aligned}$$
 (Darcy)

Weak form and quantity of interest

Darcy problem [Eigel et al., 2016]

Almost everywhere on Ω ,

$$\begin{aligned} -\operatorname{div}(\exp(a)\nabla u) &= f & \text{in } D, \\ u &= 0 & \text{on } \partial D. \end{aligned}$$
 (Darcy)

Weak form

Seek u in $L^2(\Omega)\times H^1_0(D)$ such that a.e. in Ω and for every v in $H^1_0(D)$

$$\int_{D} \exp(a) \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{D} f v \, \mathrm{d}x.$$
 (SPDE)

Weak form and quantity of interest

We are not interested in the entire solution u but only in the expectation of some linear quantity of interest defined from a deterministic function g by

Quantity of interest $\mathbb{E}[Q] := \mathbb{E}[Q(u)] := \int_{\Omega} \int_{D} gu \, dx \, dP(\omega).$ (Qol)

Weak form and quantity of interest

We are not interested in the entire solution u but only in the expectation of some linear quantity of interest defined from a deterministic function g by

Quantity of interest $\mathbb{E}[Q] := \mathbb{E}[Q(u)] := \int_{\Omega} \int_{D} gu \, dx \, dP(\omega). \quad (Qol)$

Goals

- Estimate $\mathbb{E}[Q]$.
- Control the estimation error.

Table of contents

• Model problem introduction

- First approach: standard Monte-Carlo
- First approach: error control
- Second approach: multi-level Monte-Carlo
- Second approach: error control
- MLMC Algorithm
- Future work

Deterministic discretisation: Finite element method

To discretise our problem we need:

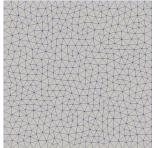
• A mesh (triangulation) \mathcal{T}_h composed by cells denoted T,



Deterministic discretisation: Finite element method

To discretise our problem we need:

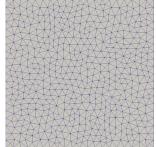
- A mesh (triangulation) \mathcal{T}_h composed by cells denoted T,
- sets $\mathcal{P}^k(T)$ of polynomial functions of degree k on T,



Deterministic discretisation: Finite element method

To discretise our problem we need:

- A mesh (triangulation) \mathcal{T}_h composed by cells denoted T,
- sets $\mathcal{P}^k(T)$ of polynomial functions of degree k on T,
- a finite dimensional space V_h ⊂ H¹₀,



$$V_h := \left\{ v_h \in \mathcal{C}^0(D), \ v_h \in \mathcal{P}^k(T) \ \forall T \in \mathcal{T}_h, \ v_{h|\partial D} = 0 \right\}.$$

Deterministic discretisation: Finite element method

Weak form Seek u in $L^{2}(\Omega) \times H_{0}^{1}(D)$ such that a.e. in Ω and for every v in $H_{0}^{1}(D)$ $\int_{D} \exp(a)\nabla u \cdot \nabla v \, dx = \int_{D} fv \, dx.$ (SPDE)

Deterministic discretisation: Finite element method

Weak form

Seek u in $L^2(\Omega)\times H^1_0(D)$ such that a.e. in Ω and for every v in $H^1_0(D)$

$$\int_{D} \exp(a) \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{D} f v \, \mathrm{d}x.$$
 (SPDE)

Finite element problem

Seek u_h in $L^2(\Omega) \times V_h$ such that a.e. in Ω and for any v_h in V_h ,

$$\int_{D} \exp(a) \nabla u_h \cdot \nabla v_h \, \mathrm{d}x = \int_{D} f v_h \, \mathrm{d}x.$$
 (FE)

Deterministic discretisation: Finite element method

Weak form

Seek u in $L^2(\Omega)\times H^1_0(D)$ such that a.e. in Ω and for every v in $H^1_0(D)$

$$\int_{D} \exp(a) \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{D} f v \, \mathrm{d}x.$$
 (SPDE)

Finite element problem

Seek u_h in $L^2(\Omega) \times V_h$ such that a.e. in Ω and for any v_h in V_h ,

$$\int_{D} \exp(\mathbf{a}) \nabla u_h \cdot \nabla v_h \, \mathrm{d}x = \int_{D} f v_h \, \mathrm{d}x.$$
 (FE)

Discretisation of the random field

We need to draw a sample from a discretization of the random field a.

- Cholesky decomposition,
 - simple to derive,
 - dense covariance matrix decomposition,

Discretisation of the random field

We need to draw a sample from a discretization of the random field a.

- Cholesky decomposition,
 - simple to derive,
 - dense covariance matrix decomposition,
- Karhunen-Loève decomposition [Matthies, 2008],
 - dense eigenvalue problem to solve or dense covariance matrix decomposition,
 - can be expensive if the random field is not smooth.

Discretisation of the random field

We need to draw a sample from a discretization of the random field a.

- Cholesky decomposition,
 - simple to derive,
 - dense covariance matrix decomposition,
- Karhunen-Loève decomposition [Matthies, 2008],
 - dense eigenvalue problem to solve or dense covariance matrix decomposition,
 - can be expensive if the random field is not smooth.
- SPDE numerical resolution (with FEM) [Whittle, 1954], [Lindgren et al., 2011], [Bolin et al., 2017]
 - reduced computational complexity due to sparse precision matrix,
 - problem similar to the main one,
 - allows to define generalisations of the Matérn field that are still useful in practice,
 - a «straightforward» generalisation to manifolds using Laplace-Beltrami operator.

Discretisation of the random field

Matérn SPDE [Croci et al., 2018]

Given a Gaussian white noise \dot{W} defined on \mathbb{R}^d and real parameters $\kappa > 0$ and $\alpha > d/2$, the solution a of the SPDE

$$(\kappa^2 - \Delta)^{\alpha/2} a = \dot{\mathcal{W}},$$

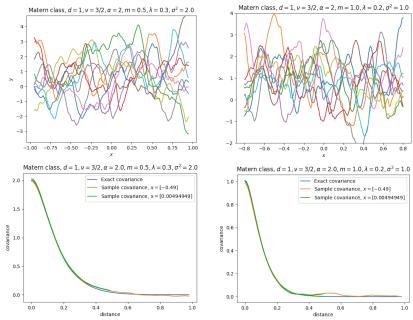
is a Matérn random field defined on \mathbb{R}^d with:

• smoothness
$$u = \alpha - d/2$$
,

• marginal variance $\sigma^2 = \frac{\Gamma(\nu)}{\Gamma(\nu+d/2)(4\pi)^{d/2}\kappa^{2\nu}}$,

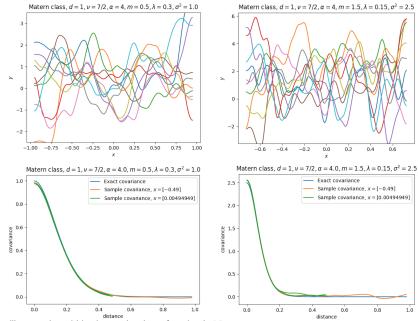
• correlation length
$$\lambda \simeq rac{\sqrt{8
u}}{\kappa}$$

$$(\kappa^2 - \Delta)^{\alpha/2} a = \dot{\mathcal{W}}$$



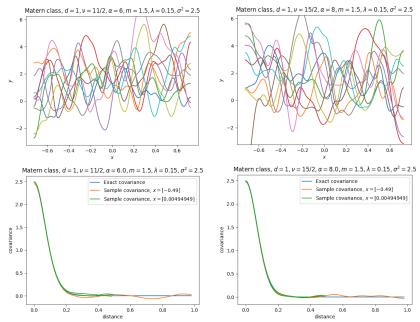
Controlling error in multi-level approximations of stochastic PDEs

$$(\kappa^2 - \Delta)^{\alpha/2} a = \dot{\mathcal{W}}.$$



Controlling error in multi-level approximations of stochastic PDEs

$$(\kappa^2 - \Delta)^{\alpha/2} a = \dot{\mathcal{W}}.$$



Controlling error in multi-level approximations of stochastic PDEs

Discretisation of the random field

Once we have solved the Matérn SPDE as well as the (FE) problem, we get a sample of the numerical solution u_h and we can compute an approximation of (QoI)

$$Q_h := Q(u_h) = \int_D g u_h \, \mathrm{d}x.$$

Discretisation of the random field

Once we have solved the Matérn SPDE as well as the (FE) problem, we get a sample of the numerical solution u_h and we can compute an approximation of (QoI)

$$Q_h := Q(u_h) = \int_D g u_h \, \mathrm{d}x.$$

Then,

$$\mathbb{E}\left[Q\right]\simeq\mathbb{E}\left[Q_{h}\right].$$

Stochastic discretisation: Monte Carlo method

Monte Carlo

Let $\left(Q_h^{(n)}\right)_{n=1}^N$ be independent random variables in $L^1(\Omega, \mathbb{R})$ of same law than Q_h , then

$$\mathbf{E}_{N}^{\mathrm{MC}}[Q_{h}] := N^{-1} \sum_{n=1}^{N} Q_{h}^{(n)} \xrightarrow{a.s.} \mathbb{E}[Q_{h}].$$

Stochastic discretisation: Monte Carlo method

Monte Carlo

Let $\left(Q_h^{(n)}\right)_{n=1}^N$ be independent random variables in $L^1(\Omega, \mathbb{R})$ of same law than Q_h , then

$$\mathbf{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right] := N^{-1} \sum_{n=1}^{N} Q_{h}^{(n)} \xrightarrow{a.s.} \mathbb{E}\left[Q_{h}\right].$$

For N large enough we have,

$$\mathbb{E}\left[Q\right] \simeq \mathbb{E}\left[Q_h\right] \simeq \mathbb{E}_N^{\mathrm{MC}}\left[Q_h\right].$$

 $\mathbb{E}[Q] \approx \mathbb{E}_N^{\mathrm{MC}}[Q_h].$

 $\mathbb{E}\left[Q\right] \approx \mathbf{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right].$

• Mean square error: for a given tolerance ε ,

 $\mathbb{E}\left[\left(\mathbf{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right]-\mathbb{E}\left[Q\right]\right)^{2}\right] = \operatorname{Var}\left[\mathbf{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right]\right] + \mathbb{E}\left[\mathbf{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right]-Q\right]^{2}$

 $\mathbb{E}\left[Q\right] \approx \mathbf{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right].$

• Mean square error: for a given tolerance ε ,

$$\mathbb{E}\left[\left(\mathbb{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right] - \mathbb{E}\left[Q\right]\right)^{2}\right] = \operatorname{Var}\left[\mathbb{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right]\right] + \mathbb{E}\left[\mathbb{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right] - Q\right]^{2}$$
$$= N^{-1}\operatorname{Var}\left[Q\right] + \mathbb{E}\left[Q_{h} - Q\right]^{2}$$

 $\mathbb{E}\left[Q\right] \approx \mathbf{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right].$

• Mean square error: for a given tolerance ε ,

 $\mathbb{E}\left[\left(\mathbb{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right] - \mathbb{E}\left[Q\right]\right)^{2}\right] = \operatorname{Var}\left[\mathbb{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right]\right] + \mathbb{E}\left[\mathbb{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right] - Q\right]^{2}$ $= N^{-1}\operatorname{Var}\left[Q\right] + \mathbb{E}\left[Q_{h} - Q\right]^{2}$ $= \operatorname{Variance} + \operatorname{FE}\operatorname{bias}$ $\leqslant \varepsilon^{2}.$

 $\mathbb{E}\left[Q\right] \approx \mathbf{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right].$

• Mean square error: for a given tolerance ε ,

 $\mathbb{E}\left[\left(\mathbb{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right] - \mathbb{E}\left[Q\right]\right)^{2}\right] = \operatorname{Var}\left[\mathbb{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right]\right] + \mathbb{E}\left[\mathbb{E}_{N}^{\mathrm{MC}}\left[Q_{h}\right] - Q\right]^{2}$ $= N^{-1}\operatorname{Var}\left[Q\right] + \mathbb{E}\left[Q_{h} - Q\right]^{2}$ $= \operatorname{Variance} + \operatorname{FE}\operatorname{bias}$ $\leqslant \varepsilon^{2}.$

• Computational cost: if we assume that $|\mathbb{E}[Q_h - Q]| \leq ch^{\alpha}$,

$$\operatorname{Cost}(\operatorname{E}_{N}^{\operatorname{MC}}[Q_{h}]) = \mathcal{O}(Nh^{-1}) = \mathcal{O}(\varepsilon^{-2-\alpha}).$$

Controlling error in multi-level approximations of stochastic PDEs

Table of contents

- Model problem introduction
- First approach: standard Monte-Carlo
- First approach: error control
- Second approach: multi-level Monte-Carlo
- Second approach: error control
- MLMC Algorithm
- Future work

Second approach: multi-level Monte-Carlo

Deterministic discretisation: Finite element method

Finite element problem

Let \mathcal{T}_l be a triangulation on D of maximum diameter h_l and $V_l \subset H_0^1$ be a finite dimensional function space. Seek u_l in $L^2(\Omega) \times V_l$ such that almost everywhere in Ω and for any v_l in V_l ,

$$\int_{D} \exp(a) \nabla u_l \cdot \nabla v_l \, \mathrm{d}x = \int_{D} f v_l \, \mathrm{d}x.$$
 (FE)

Deterministic discretisation: Finite element method

Finite element problem

Let \mathcal{T}_l be a triangulation on D of maximum diameter h_l and $V_l \subset H_0^1$ be a finite dimensional function space. Seek u_l in $L^2(\Omega) \times V_l$ such that almost everywhere in Ω and for any v_l in V_l ,

$$\int_{D} \exp(a) \nabla u_l \cdot \nabla v_l \, \mathrm{d}x = \int_{D} f v_l \, \mathrm{d}x.$$
 (FE)

Quantity of interest

The finite element approximation of (QoI) is given by,

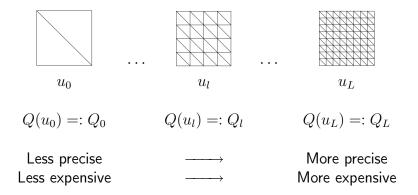
$$\mathbb{E}[Q_l] := \mathbb{E}[Q(u_l)] := \int_{\Omega} \int_{D} gu_l \, \mathrm{d}x \, \mathrm{d}P(\omega).$$

Stochastic discretisation: Multi-level Monte Carlo method

Multi-level Monte Carlo method is a multi-fidelity method and variance reduction method ([Peherstorfer et al., 2018], [Giles, 2015]).

Stochastic discretisation: Multi-level Monte Carlo method

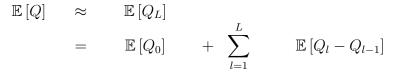
Multi-level Monte Carlo method is a multi-fidelity method and variance reduction method ([Peherstorfer et al., 2018], [Giles, 2015]).



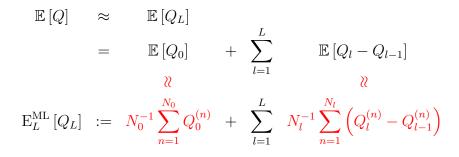
Stochastic discretisation: Multi-level Monte Carlo method

 $\mathbb{E}\left[Q\right] \quad \approx \quad \mathbb{E}\left[Q_L\right]$

Stochastic discretisation: Multi-level Monte Carlo method

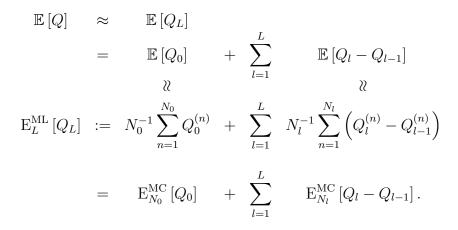


Stochastic discretisation: Multi-level Monte Carlo method



Controlling error in multi-level approximations of stochastic PDEs

Stochastic discretisation: Multi-level Monte Carlo method



Controlling error in multi-level approximations of stochastic PDEs

Stochastic discretisation: Multi-level Monte Carlo method

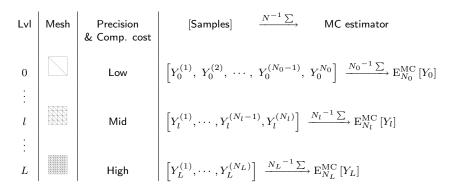
Let us rewrite the MLMC estimator by defining

$$Y_l := \begin{cases} Q_0, & l = 0, \\ Q_l - Q_{l-1}, & l > 0. \end{cases}$$

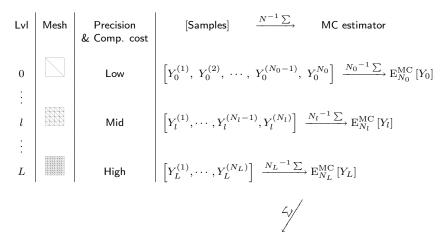
Then,

$$\mathbf{E}_{L}^{\mathrm{ML}}\left[Q_{L}\right] := \sum_{l=0}^{L} \mathbf{E}_{N_{l}}^{\mathrm{MC}}\left[Y_{l}\right].$$

Stochastic discretisation: Multi-level Monte Carlo method



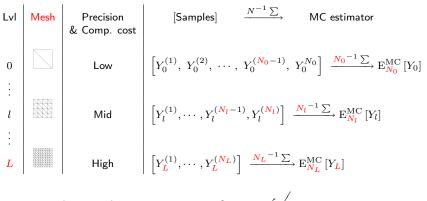
Stochastic discretisation: Multi-level Monte Carlo method



 $\mathbf{E}_{L}^{\mathrm{ML}}\left[Q_{L}\right]$

Controlling error in multi-level approximations of stochastic PDEs

Stochastic discretisation: Multi-level Monte Carlo method



How to choose these parameters ?

$$\mathbf{E}_{\boldsymbol{L}}^{\mathrm{ML}}[Q_{\boldsymbol{L}}]$$

Controlling error in multi-level approximations of stochastic PDEs

- Model problem introduction
- First approach: standard Monte-Carlo
- First approach: error control
- Second approach: multi-level Monte-Carlo
- Second approach: error control
- MLMC Algorithm
- Future work

Mean square error

$$\mathbb{E}\left[Q\right] \approx \mathbb{E}\left[Q_L\right] \approx \mathbb{E}_L^{\mathrm{ML}}\left[Q_L\right].$$

Mean square error

$$\mathbb{E}[Q] \approx \mathbb{E}[Q_L] \approx \mathbb{E}_L^{\mathrm{ML}}[Q_L].$$

• Mean square error: given a tolerance ε ,

$$\mathbb{E}\left[\left(\mathbf{E}_{L}^{\mathrm{ML}}\left[Q_{L}\right]-\mathbb{E}\left[Q\right]\right)^{2}\right] = \operatorname{Var}\left[\mathbf{E}_{L}^{\mathrm{ML}}\left[Q_{L}\right]\right] + \mathbb{E}\left[\mathbf{E}_{L}^{\mathrm{ML}}\left[Q_{L}\right]-Q\right]^{2}$$
$$= \sum_{l=0}^{L} N_{l}^{-1}\operatorname{Var}\left[Y_{l}\right] + \mathbb{E}\left[Q_{L}-Q\right]^{2}$$
$$= \operatorname{Variance} + \operatorname{FE}\operatorname{bias}$$
$$\leqslant \varepsilon^{2}.$$

Theorem [Giles, 2008], [Giles, 2015]

If there exist independent estimators Y_l based on N_l Monte Carlo samples, and positives constants α , β , γ , c_1 , c_2 , c_3 such that $\alpha \ge \frac{1}{2}\min(\beta, \gamma)$ and

$$1/ |\mathbb{E}[Q_l - Q]| \leqslant c_1 h_l^{\alpha}, \qquad 2/ V_l := \operatorname{Var}[Y_l] \leqslant c_2 N_l^{-1} h_l^{\beta}$$

3/ C_l , the computational complexity of Y_l is bounded by $C_l \leq c_3 N_l h_l^{-\gamma}$,

then for any tolerance $\varepsilon < {\rm e}^{-1}$ there exist an integer L and a sequence of integers $(N_l)_{l=0}^L$ for which we achieve the mean square error bound

$$\mathbb{E}\left[\left(\mathbf{E}_{L}^{\mathrm{ML}}\left[Q_{L}\right]-\mathbb{E}\left[Q\right]\right)^{2}\right]<\varepsilon^{2}.$$

Moreover there exists a constant $c_4>0$ such that the overall computational complexity C of the MLMC estimator is bounded by

$$C \leqslant \begin{cases} c_4 \varepsilon^{-2}, & \beta > \gamma, \\ c_4 \varepsilon^{-2} \ln(\varepsilon)^2, & \beta = \gamma, \\ c_4 \varepsilon^{-2 - (\gamma - \beta)/\alpha}, & \beta < \gamma. \end{cases}$$

Theorem [Giles, 2008], [Giles, 2015]

If there exist independent estimators Y_l based on N_l Monte Carlo samples, and positives constants α , β , γ , c_1 , c_2 , c_3 such that $\alpha \ge \frac{1}{2}\min(\beta, \gamma)$ and

$$1/ |\mathbb{E}[Q_l - Q]| \leqslant c_1 h_l^{\alpha}, \qquad 2/V_l := \operatorname{Var}[Y_l] \leqslant c_2 N_l^{-1} h_l^{\beta}$$

3/ C_l , the computational complexity of Y_l is bounded by $C_l \leq c_3 N_l h_l^{-\gamma}$,

then for any tolerance $\varepsilon < {\rm e}^{-1}$ there exist an integer L and a sequence of integers $(N_l)_{l=0}^L$ for which we achieve the mean square error bound

$$\mathbb{E}\left[\left(\mathbf{E}_{L}^{\mathrm{ML}}\left[Q_{L}\right] - \mathbb{E}\left[Q\right]\right)^{2}\right] < \varepsilon^{2}.$$

Moreover there exists a constant $c_4>0$ such that the overall computational complexity C of the MLMC estimator is bounded by

$$C \leqslant \begin{cases} c_4 \varepsilon^{-2}, & \beta > \gamma, \\ c_4 \varepsilon^{-2} \ln(\varepsilon)^2, & \beta = \gamma, \\ c_4 \varepsilon^{-2 - (\gamma - \beta)/\alpha}, & \beta < \gamma. \end{cases}$$

Theorem [Giles, 2008], [Giles, 2015]

If there exist independent estimators Y_l based on N_l Monte Carlo samples, and positives constants α , β , γ , c_1 , c_2 , c_3 such that $\alpha \ge \frac{1}{2}\min(\beta, \gamma)$ and

$$1/ |\mathbb{E}[Q_l - Q]| \leq c_1 h_l^{\alpha}, \qquad 2/V_l := \operatorname{Var}[Y_l] \leq c_2 N_l^{-1} h_l^{\beta}$$

3/ C_l , the computational complexity of Y_l is bounded by $C_l \leq c_3 N_l h_l^{-\gamma}$,

then for any tolerance $\varepsilon < {\rm e}^{-1}$ there exist an integer L and a sequence of integers $(N_l)_{l=0}^L$ for which we achieve the mean square error bound

$$\mathbb{E}\left[\left(\mathbf{E}_{L}^{\mathrm{ML}}\left[Q_{L}\right]-\mathbb{E}\left[Q\right]\right)^{2}\right]<\varepsilon^{2}.$$

Moreover there exists a constant $c_4>0$ such that the overall computational complexity C of the MLMC estimator is bounded by

$$C \leqslant \begin{cases} c_4 \varepsilon^{-2}, & \beta > \gamma, \\ c_4 \varepsilon^{-2} \ln(\varepsilon)^2, & \beta = \gamma, \\ c_4 \varepsilon^{-2-(\gamma-\beta)/\alpha}, & \beta < \gamma. \end{cases}$$

Stochastic error control

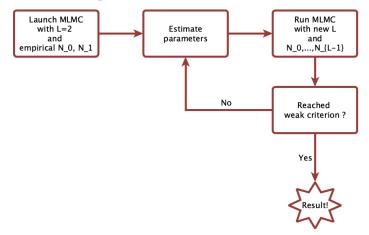
$$C \leqslant \begin{cases} c_4 \varepsilon^{-2}, & \beta > \gamma, \\ c_4 \varepsilon^{-2} \ln(\varepsilon)^2, & \beta = \gamma, \\ c_4 \varepsilon^{-2-(\gamma-\beta)/\alpha}, & \beta < \gamma. \end{cases}$$

Using the expressions of $(N_l)_{l=0}^L$ computed in Giles' theorem, we can write

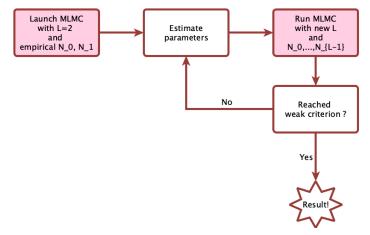
$$C \leqslant 2\varepsilon^{-2} \left(\sum_{l=0}^{L} \sqrt{V_l C_l}\right)^2$$
$$\leqslant 2\varepsilon^{-2} \left(\sum_{l=0}^{L} h_l^{\frac{\beta-\gamma}{2}}\right)^2$$

- Model problem introduction
- First approach: standard Monte-Carlo
- First approach: error control
- Second approach: multi-level Monte-Carlo
- Second approach: error control
- MLMC Algorithm
- Future work

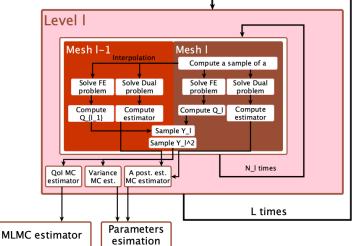
MLMC algorithm overview



MLMC algorithm overview



MLMC estimator



Controlling error in multi-level approximations of stochastic PDEs

My idea of the algorithm,

1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.

- 1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.
- 2/ Compute N_0 samples of $Q_0 = Y_0$ as well as the associated MC estimator.

- 1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.
- 2/ Compute N_0 samples of $Q_0 = Y_0$ as well as the associated MC estimator.
- 3/ Compute N_1 samples of $Y_1 = Q_1 Q_0$ and Y_1^2 .

- 1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.
- 2/ Compute N_0 samples of $Q_0 = Y_0$ as well as the associated MC estimator.
- 3/ Compute N_1 samples of $Y_1 = Q_1 Q_0$ and Y_1^2 .
- 4/ Compute the associated MC estimator, as well as the MC estimator of the variance of Y_1 , denoted \hat{V}_1 .

- 1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.
- 2/ Compute N_0 samples of $Q_0 = Y_0$ as well as the associated MC estimator.
- 3/ Compute N_1 samples of $Y_1 = Q_1 Q_0$ and Y_1^2 .
- 4/ Compute the associated MC estimator, as well as the MC estimator of the variance of Y_1 , denoted \hat{V}_1 .
- 5/ Compute a local a posteriori error estimation η_l of $|\mathbb{E}[Q_1 Q]|$ to refine the mesh.

- 1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.
- 2/ Compute N_0 samples of $Q_0 = Y_0$ as well as the associated MC estimator.
- 3/ Compute N_1 samples of $Y_1 = Q_1 Q_0$ and Y_1^2 .
- 4/ Compute the associated MC estimator, as well as the MC estimator of the variance of Y_1 , denoted \hat{V}_1 .
- 5/ Compute a local a posteriori error estimation η_l of $|\mathbb{E}[Q_1 Q]|$ to refine the mesh.
- 6/ Check if a) $\hat{V}_1 \leqslant \frac{\varepsilon^2}{2}$ and if b) $\eta_l \leqslant \frac{\varepsilon^2}{2}$.

- 1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.
- 2/ Compute N_0 samples of $Q_0 = Y_0$ as well as the associated MC estimator.
- 3/ Compute N_1 samples of $Y_1 = Q_1 Q_0$ and Y_1^2 .
- 4/ Compute the associated MC estimator, as well as the MC estimator of the variance of Y_1 , denoted \hat{V}_1 .
- 5/ Compute a local a posteriori error estimation η_l of $|\mathbb{E}[Q_1 Q]|$ to refine the mesh.
- 6/ Check if a) $\hat{V}_1 \leqslant \frac{\varepsilon^2}{2}$ and if b) $\eta_l \leqslant \frac{\varepsilon^2}{2}$.
 - If a) and b) are satisfied, stop the algorithm.

- 1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.
- 2/ Compute N_0 samples of $Q_0 = Y_0$ as well as the associated MC estimator.
- 3/ Compute N_1 samples of $Y_1 = Q_1 Q_0$ and Y_1^2 .
- 4/ Compute the associated MC estimator, as well as the MC estimator of the variance of Y_1 , denoted \hat{V}_1 .
- 5/ Compute a local a posteriori error estimation η_l of $|\mathbb{E}[Q_1 Q]|$ to refine the mesh.
- 6/ Check if a) $\hat{V}_1 \leqslant \frac{\varepsilon^2}{2}$ and if b) $\eta_l \leqslant \frac{\varepsilon^2}{2}$.
 - If a) and b) are satisfied, stop the algorithm.
 - If a) is satisfied and b) is not, (re)compute the optimal number of samples to add to each level and go to 2/.

- 1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.
- 2/ Compute N_0 samples of $Q_0 = Y_0$ as well as the associated MC estimator.
- 3/ Compute N_1 samples of $Y_1 = Q_1 Q_0$ and Y_1^2 .
- 4/ Compute the associated MC estimator, as well as the MC estimator of the variance of Y_1 , denoted \hat{V}_1 .
- 5/ Compute a local a posteriori error estimation η_l of $|\mathbb{E}[Q_1 Q]|$ to refine the mesh.
- 6/ Check if a) $\hat{V}_1 \leqslant \frac{\varepsilon^2}{2}$ and if b) $\eta_l \leqslant \frac{\varepsilon^2}{2}$.
 - If a) and b) are satisfied, stop the algorithm.
 - If a) is satisfied and b) is not, (re)compute the optimal number of samples to add to each level and go to 2/.
 - If b) is satisfied and a) is not, add a new level, compute the optimal number of samples to add to each level and go to 2/.

My idea of the algorithm,

- 1/ Initiate the algorithm with L = 2 and an arbitrary (not too big) number of samples for each level, say $N_0 = N_1 = 10$.
- 2/ Compute N_0 samples of $Q_0 = Y_0$ as well as the associated MC estimator.
- 3/ Compute N_1 samples of $Y_1 = Q_1 Q_0$ and Y_1^2 .
- 4/ Compute the associated MC estimator, as well as the MC estimator of the variance of Y_1 , denoted \hat{V}_1 .
- 5/ Compute a local a posteriori error estimation η_l of $|\mathbb{E}[Q_1 Q]|$ to refine the mesh.
- 6/ Check if a) $\hat{V}_1 \leqslant \frac{\varepsilon^2}{2}$ and if b) $\eta_l \leqslant \frac{\varepsilon^2}{2}$.
 - If a) and b) are satisfied, stop the algorithm.
 - If a) is satisfied and b) is not, (re)compute the optimal number of samples to add to each level and go to 2/.
 - If b) is satisfied and a) is not, add a new level, compute the optimal number of samples to add to each level and go to 2/.
 - If neither a) or b) are satisfied, idem.

Controlling error in multi-level approximations of stochastic PDEs

- Model problem introduction
- First approach: standard Monte-Carlo
- First approach: error control
- Second approach: multi-level Monte-Carlo
- Second approach: error control
- MLMC Algorithm
- Future work

• Get some numerical results,

- Get some numerical results,
- try other ways to measure the error, e.g. confidence interval ([Collier et al., 2015]),

- Get some numerical results,
- try other ways to measure the error, e.g. confidence interval ([Collier et al., 2015]),
- do some numerical analysis on Giles' theorem/algorithm and include more a posteriori error estimation in it,

- Get some numerical results,
- try other ways to measure the error, e.g. confidence interval ([Collier et al., 2015]),
- do some numerical analysis on Giles' theorem/algorithm and include more a posteriori error estimation in it,
- run tests on engineering examples (i.e. 3D + HPC),

- Get some numerical results,
- try other ways to measure the error, e.g. confidence interval ([Collier et al., 2015]),
- do some numerical analysis on Giles' theorem/algorithm and include more a posteriori error estimation in it,
- run tests on engineering examples (i.e. 3D + HPC),
- study and run tests for the Matérn SPDE,

- Get some numerical results,
- try other ways to measure the error, e.g. confidence interval ([Collier et al., 2015]),
- do some numerical analysis on Giles' theorem/algorithm and include more a posteriori error estimation in it,
- run tests on engineering examples (i.e. 3D + HPC),
- study and run tests for the Matérn SPDE,
- try random field data with non-homogeneous correlation length and random region of smaller correlation length.

Acknowledgement

Thank you for your attention!

The ASSIST project has received funding from the University of Luxembourg Internal Research Project scheme.

The DRIVEN project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 811099.

Controlling error in multi-level approximations of stochastic PDEs

References |

- Bolin, D., Kirchner, K., and Kovács, M. (2017). Numerical solution of fractional elliptic stochastic PDEs with spatial white noise. *IMA J. Numer. Anal.*, pages 1–21.
- Collier, N., Lateef, A., Ali, H., Nobile, F., Schwerin, E. V., Haji-Ali, A. L., Nobile, F., von Schwerin, E., and Tempone, R. (2015). A continuation multilevel Monte Carlo algorithm. *BIT Numer. Math.*, 55(2):399–432.
- Croci, M., Giles, M. B., Rognes, M. E., and Farrell, P. E. (2018). Efficient white noise sampling and coupling for multilevel Monte Carlo with non-nested meshes. *SIAM/ASA J. Uncertainty Quantification*, pages 1–28.
- Eigel, M., Merdon, C., and Neumann, J. (2016). An Adaptive Multilevel Monte Carlo Method with Stochastic Bounds for Quantities of Interest with Uncertain Data. SIAM/ASA J. Uncertain. Quantif., 4(1):1219–1245.
- Giles, M. B. (2008). Multilevel Monte Carlo Path Simulation. Oper. Res., 56(3):607–617.
- Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numer., 24(2015):259-328.
- Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B, 73:423–498.
- Matthies, H. G. (2008). Stochastic finite elements: Computational approaches to stochastic partial differential equations. ZAMM Zeitschrift fur Angew. Math. und Mech., 88(11):849–873.

- Peherstorfer, B., Willcox, K., and Gunzburger, M. (2018). Survey of multifidelity methods in uncertainty propagation, inference, and optimization. *SIAM Rev.*, 60(3):550– 591.
- Whittle, P. (1954). On Stationary Processes in the Plane. *Biometrika*, 41(3/4):434–449.