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Model problem introduction

We are interested in a model problem for groundwater flow
modelling in porous media.
Let D be a physical domain (of dimension d), f a deterministic
data function and a a Matérn Gaussian random field defined
on Ω×D where (Ω,A, P ) is some probability space.

Darcy problem [Eigel et al., 2016]
Almost everywhere on Ω,

− div(exp(a)∇u) = f in D,
u = 0 on ∂D. (Darcy)
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Model problem introduction
Recalls on Gaussian random fields

Gaussian random field
Let (E,B,m) be a measure space. A real valued Gaussian random field
G on E is a function

G : Ω× E −! R
(ω, e) 7−! Gω(e),

such that for any finite set {e1, · · · , en} ⊂ E, the vector
(G(e1), · · · , G(en)), is a Gaussian random vector.
A Gaussian random field is charaterized by µ and Σ resp. its mean and
autocovariance functions

µ : E −! R
e 7−! E [G(e)] ,

Σ : E × E −! R
(e, e′) 7−! E [(G(e)− µ(e))(G(e′)− µ(e′))] .
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Model problem introduction
Recalls on Gaussian random fields

Gaussian white noise
We call Gaussian white noise on Rd the gaussian random field

Ẇ : Ω× L2(Rd) −! R,

with zero mean and autocovariance function defined by

ΣẆ : L2(Rd)× L2(Rd) −! R

(v, w) 7−!

∫
Rd
vw dx.
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Model problem introduction
Recalls on Gaussian random fields

Matérn random fields
Let us denote Γ the Euler gamma function and Kν the Bessel’s modified
function of the second kind of parameter ν. A Matérn random field on
D is a particular Gaussian random field (on D) with autocovariance
function C defined for x, y in D by

C(x, y) =
σ2

2ν−1Γ(ν)
(κr)νKν(κr),

where,

r := |x− y|2, κ :=

√
8ν

λ
,

and the non-negative real parameters σ2, ν and λ denote resp. the
marginal variance, smoothness and correlation length of the field.
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Model problem introduction
Weak form and quantity of interest

Darcy problem [Eigel et al., 2016]
Almost everywhere on Ω,

−div(exp(a)∇u) = f in D,
u = 0 on ∂D. (Darcy)

Weak form
Seek u in L2(Ω)×H1

0 (D) such that a.e. in Ω and for every v in H1
0 (D)∫

D

exp(a)∇u · ∇v dx =

∫
D

fv dx. (SPDE)
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Model problem introduction
Weak form and quantity of interest

We are not interested in the entire solution u but only in the
expectation of some linear quantity of interest defined from a
deterministic function g by

Quantity of interest

E [Q] := E [Q(u)] :=

∫
Ω

∫
D

gu dx dP (ω). (QoI)

Goals
• Estimate E [Q].
• Control the estimation error.
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First approach: standard Monte-Carlo
Deterministic discretisation: Finite element method

To discretise our problem we need:

• A mesh (triangulation) Th composed by cells
denoted T ,

• sets Pk(T ) of polynomial functions of degree
k on T ,

• a finite dimensional space Vh ⊂ H1
0 ,

Vh :=
{
vh ∈ C0(D), vh ∈ Pk(T ) ∀T ∈ Th, vh|∂D = 0

}
.
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First approach: standard Monte-Carlo
Deterministic discretisation: Finite element method
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0 (D) such that a.e. in Ω and for every v in H1
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D
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D
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D

exp(a)∇uh · ∇vh dx =
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D

fvh dx. (FE)
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First approach: standard Monte-Carlo
Discretisation of the random field

We need to draw a sample from a discretization of the random field a.

• Cholesky decomposition,
I simple to derive,
I dense covariance matrix decomposition,

• Karhunen-Loève decomposition [Matthies, 2008],

I dense eigenvalue problem to solve or dense covariance matrix
decomposition,

I can be expensive if the random field is not smooth.

• SPDE numerical resolution (with FEM) [Whittle, 1954], [Lindgren
et al., 2011], [Bolin et al., 2017]

I reduced computational complexity due to sparse precision matrix,
I problem similar to the main one,
I allows to define generalisations of the Matérn field that are still useful in

practice,
I a «straightforward» generalisation to manifolds using Laplace-Beltrami

operator.
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First approach: standard Monte-Carlo
Discretisation of the random field

Matérn SPDE [Croci et al., 2018]
Given a Gaussian white noise Ẇ defined on Rd and real
parameters κ > 0 and α > d/2, the solution a of the SPDE

(κ2 −∆)α/2a = Ẇ ,

is a Matérn random field defined on Rd with:
• smoothness ν = α− d/2,
• marginal variance σ2 = Γ(ν)

Γ(ν+d/2)(4π)d/2κ2ν
,

• correlation length λ '
√

8ν
κ
.

Controlling error in multi-level approximations of stochastic PDEs 14/40



(κ2 −∆)α/2a = Ẇ.
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(κ2 −∆)α/2a = Ẇ.
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First approach: standard Monte-Carlo
Discretisation of the random field

Once we have solved the Matérn SPDE as well as the (FE)
problem, we get a sample of the numerical solution uh and we
can compute an approximation of (QoI)

Qh := Q(uh) =

∫
D

guh dx.

Then,
E [Q] ' E [Qh] .
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First approach: standard Monte-Carlo
Stochastic discretisation: Monte Carlo method

Monte Carlo

Let
(
Q

(n)
h

)N
n=1

be independent random variables in L1(Ω,R)

of same law than Qh, then

EMC
N [Qh] := N−1

N∑
n=1

Q
(n)
h

a.s.
−−−! E [Qh] .

For N large enough we have,

E [Q] ' E [Qh] ' EMC
N [Qh] .
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First approach: error control

E [Q] ≈ EMC
N [Qh] .

• Mean square error: for a given tolerance ε,

E
[(

EMC
N [Qh]− E [Q]

)2]
= Var

[
EMC
N [Qh]

]
+ E

[
EMC
N [Qh]−Q

]2
= N−1 Var [Q] + E [Qh −Q]

2

= Variance + FE bias

6 ε2.

• Computational cost: if we assume that |E [Qh −Q] | 6 chα,

Cost(EMC
N [Qh]) = O

(
Nh−1

)
= O(ε−2−α).
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Second approach: multi-level
Monte-Carlo
Deterministic discretisation: Finite element method

Finite element problem
Let Tl be a triangulation on D of maximum diameter hl and Vl ⊂ H1

0 be
a finite dimensional function space. Seek ul in L2(Ω)× Vl such that
almost everywhere in Ω and for any vl in Vl,∫

D

exp(a)∇ul · ∇vl dx =

∫
D

fvl dx. (FE)

Quantity of interest
The finite element approximation of (QoI) is given by,

E [Ql] := E [Q(ul)] :=

∫
Ω

∫
D

gul dx dP (ω).

Controlling error in multi-level approximations of stochastic PDEs 22/40



Second approach: multi-level
Monte-Carlo
Deterministic discretisation: Finite element method

Finite element problem
Let Tl be a triangulation on D of maximum diameter hl and Vl ⊂ H1

0 be
a finite dimensional function space. Seek ul in L2(Ω)× Vl such that
almost everywhere in Ω and for any vl in Vl,∫

D

exp(a)∇ul · ∇vl dx =

∫
D

fvl dx. (FE)

Quantity of interest
The finite element approximation of (QoI) is given by,

E [Ql] := E [Q(ul)] :=

∫
Ω

∫
D

gul dx dP (ω).

Controlling error in multi-level approximations of stochastic PDEs 22/40



Second approach: multi-level
Monte-Carlo
Stochastic discretisation: Multi-level Monte Carlo method

Multi-level Monte Carlo method is a multi-fidelity method and variance
reduction method ([Peherstorfer et al., 2018], [Giles, 2015]).

· · · · · ·
u0 ul uL

Q(u0) =: Q0 Q(ul) =: Ql Q(uL) =: QL

Less precise −−−! More precise
Less expensive −−−! More expensive
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Second approach: multi-level
Monte-Carlo
Stochastic discretisation: Multi-level Monte Carlo method

E [Q] ≈ E [QL]

= E [Q0] +
L∑
l=1

E [Ql −Ql−1]

≈ ≈

EML
L [QL] := N−1

0

N0∑
n=1

Q
(n)
0 +

L∑
l=1

N−1
l

Nl∑
n=1

(
Q

(n)
l −Q

(n)
l−1

)

= EMC
N0

[Q0] +
L∑
l=1

EMC
Nl

[Ql −Ql−1] .
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Second approach: multi-level
Monte-Carlo
Stochastic discretisation: Multi-level Monte Carlo method

Let us rewrite the MLMC estimator by defining

Yl :=

{
Q0, l = 0,
Ql −Ql−1, l > 0.

Then,

EML
L [QL] :=

L∑
l=0

EMC
Nl

[Yl] .
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Second approach: multi-level
Monte-Carlo
Stochastic discretisation: Multi-level Monte Carlo method

Lvl Mesh Precision [Samples]
N−1 ∑
−−−−−! MC estimator

& Comp. cost

0 Low
[
Y

(1)
0 , Y

(2)
0 , · · · , Y (N0−1)

0 , Y N0
0

]
N0

−1 ∑
−−−−−−! EMC

N0
[Y0]

...

l Mid
[
Y

(1)
l , · · · , Y (Nl−1)

l , Y
(Nl)
l

]
Nl

−1 ∑
−−−−−−! EMC

Nl
[Yl]

...

L High
[
Y

(1)
L , · · · , Y (NL)

L

]
NL

−1 ∑
−−−−−−! EMC

NL
[YL]

How to choose these parameters ?

∑
 
−−
−−
−

EML
L [QL]
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Second approach: error control
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Second approach: error control
Mean square error

E [Q] ≈ E [QL] ≈ EML
L [QL] .

• Mean square error: given a tolerance ε,

E
[(

EML
L [QL]− E [Q]

)2]
= Var

[
EML
L [QL]

]
+ E

[
EML
L [QL]−Q

]2
=

L∑
l=0

N−1
l Var [Yl] + E [QL −Q]

2

= Variance + FE bias

6 ε2.

Controlling error in multi-level approximations of stochastic PDEs 28/40



Second approach: error control
Mean square error

E [Q] ≈ E [QL] ≈ EML
L [QL] .

• Mean square error: given a tolerance ε,

E
[(

EML
L [QL]− E [Q]

)2]
= Var

[
EML
L [QL]

]
+ E

[
EML
L [QL]−Q

]2
=

L∑
l=0

N−1
l Var [Yl] + E [QL −Q]

2

= Variance + FE bias

6 ε2.

Controlling error in multi-level approximations of stochastic PDEs 28/40



Theorem [Giles, 2008], [Giles, 2015]
If there exist independent estimators Yl based on Nl Monte Carlo samples, and
positives constants α, β, γ, c1, c2, c3 such that α > 1

2
min(β, γ) and

1/ |E [Ql −Q] | 6 c1hαl , 2/ Vl := Var [Yl] 6 c2N
−1
l hβl ,

3/ Cl, the computational complexity of Yl is bounded by Cl 6 c3Nlh
−γ
l ,

then for any tolerance ε < e−1 there exist an integer L and a sequence of integers
(Nl)

L
l=0 for which we achieve the mean square error bound

E
[(

EML
L [QL]− E [Q]

)2]
< ε2.

Moreover there exists a constant c4 > 0 such that the overall computational
complexity C of the MLMC estimator is bounded by

C 6


c4ε

−2, β > γ,

c4ε
−2 ln(ε)2, β = γ,

c4ε
−2−(γ−β)/α, β < γ.
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Second approach: error control
Stochastic error control

C 6


c4ε
−2, β > γ,

c4ε
−2 ln(ε)2, β = γ,

c4ε
−2−(γ−β)/α, β < γ.

Using the expressions of (Nl)
L
l=0 computed in Giles’ theorem,

we can write

C 6 2ε−2

(
L∑
l=0

√
VlCl

)2

6 2ε−2

(
L∑
l=0

h
β−γ
2

l

)2
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MLMC Algorithm

My idea of the algorithm,

1/ Initiate the algorithm with L = 2 and an arbitrary (not too big)
number of samples for each level, say N0 = N1 = 10.

2/ Compute N0 samples of Q0 = Y0 as well as the associated MC
estimator.

3/ Compute N1 samples of Y1 = Q1 −Q0 and Y 2
1 .

4/ Compute the associated MC estimator, as well as the MC
estimator of the variance of Y1, denoted V̂1.

5/ Compute a local a posteriori error estimation ηl of |E [Q1 −Q] | to
refine the mesh.

6/ Check if a) V̂1 6 ε2

2 and if b) ηl 6 ε2

2 .

I If a) and b) are satisfied, stop the algorithm.
I If a) is satisfied and b) is not, (re)compute the optimal number of

samples to add to each level and go to 2/.
I If b) is satisfied and a) is not, add a new level, compute the optimal

number of samples to add to each level and go to 2/.
I If neither a) or b) are satisfied, idem.
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Future work

• Get some numerical results,

• try other ways to measure the error, e.g. confidence
interval ([Collier et al., 2015]),

• do some numerical analysis on Giles’ theorem/algorithm
and include more a posteriori error estimation in it,

• run tests on engineering examples (i.e. 3D + HPC),
• study and run tests for the Matérn SPDE,
• try random field data with non-homogeneous correlation
length and random region of smaller correlation length.
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